TY - JOUR A1 - Zhang, Zeyu A1 - Weller, Andreas A1 - Kruschwitz, Sabine T1 - Pore radius distribution and fractal dimension derived from spectral induced polarisation JF - Near Surface Geophysics N2 - The pore size distribution provides a suitable description of the pore space geometry that can be used to investigate the fractal nature of the pore space or to determine a fractal dimension. Fractal dimension describes the size of geometric objects as a function of resolution. It can be integrated into models of permeability prediction. We investigated the fractal dimension of the pore volume of 11 Eocene sandstone samples from China. This study describes an approach to use spectral induced polarisation spectra to estimate the pore size distribution and to determine the fractal dimension of the pore volume. Additionally, the fractal dimension was derived from data of the capillary pressure curves from mercury intrusion and the transversal relaxation time distribution of nuclear magnetic resonance. For samples with an effective pore radius larger than 1 μm, good agreement exists between the values of fractal dimension derived from the three different methods, which implies the identification of similar pore structures. Spectral induced polarisation can be a non-invasive laboratory technique for the estimation of the pore size distribution, but the application of the methodology for field measurements remains a challenging problem considering the limited frequency range. KW - Pore radius distribution KW - Fractal dimension KW - Spectral induced polarization PY - 2017 DO - https://doi.org/10.3997/1873-0604.2017035 SN - 1569-4445 VL - 15 IS - 6 SP - 625 EP - 632 PB - Wiley AN - OPUS4-43250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhang, Zeyu A1 - Kruschwitz, Sabine A1 - Weller, Andreas A1 - Halisch, M. A1 - Prinz, Carsten T1 - Enhanced pore space analysis by use of μ-CT, MIP, T2 - Proceedings of the Annual Symposium of the Society of Core Analysts N2 - We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data upon pore size distributions, including micro computed tomography (μ-CT), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and spectral induced polarization (SIP). The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple length scale characterization of the pore space geometry is proposed, that is based on a combination of the results from all of these methods. The findings of this approach are compared and discussed by using Bentheimer sandstone. Additionally, we compare the potential of SIP to provide a pore size distribution with other commonly used methods (MIP, NMR). The limits of resolution of SIP depend on the usable frequency range (between 0.002 and 100 Hz). The methods with similar resolution show a similar behavior of the cumulative pore volume distribution in the overlapping pore size range. The methods μ-CT and NMR provide the pore body size while MIP and SIP characterize the pore throat size. Using this difference, the average pore body to throat ratio is determined to be about three for the Bentheimer sandstone. Our study shows that a good agreement between the pore radii distributions can only be achieved if the curves are adjusted considering the resolution and pore volume in the relevant range of pore radii. The MIP curve with the widest range in resolution should be used as reference T2 - Annual Symposium of the Society of Core Analysts 2017 CY - Vienna, Austria DA - 27.08.2017 KW - Spectral induced polarization KW - Mercury intrusion porosimetry KW - µ-CT KW - Nuclear magnetic resonance KW - Bentheimer Sandstone PY - 2017 SP - 086, 1 EP - 086, 8 AN - OPUS4-43082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhang, Zeyu A1 - Kruschwitz, Sabine A1 - Prinz, Carsten A1 - Halisch, M. A1 - Weller, Andreas T1 - Porenraumanalyse mittels MIP, NMR, SIP, BET, CT und Auflichtmikroskopie N2 - In der Vergangenheit wurde immer wieder diskutiert, ob die Porenhalsverteilung poröser silikatischer Medien maßgeblich die Relaxationszeit in Messergebnissen der Spektralen Induzierten Polarisation (SIP) bestimmt und dementsprechend auch neuere Ansätze, Porenweitenverteilungen aus diesen Daten abzuleiten, zuverlässig sein können. Systematische Studien an Gesteinen mit sehr unterschiedlichen Porenverteilungen zeigten, dass in Materialien mit engen Porenhälsen (z.B. < 5 μm) vor allem oder zusätzlich zum vermuteten Porenhalspeak niederfrequente Relaxationen zu beobachten sind, deren Ursache noch unklar ist. Unter Einbeziehung der Methoden Röntgen-Computertomografie (μ-CT), Quecksilberporosimetrie (MIP), Stickstoffabsortion, Nukleare Magnetische Resonanz, SIP und Auflichtmikroskopie untersuchen wir den Porenraum hinsichtlich der Parameter Porosität, Permeabilität und innere Oberfläche und bestimmen die geometrischen Eigenschaften wie Porenweitenverteilungen oder fraktale Dimension durch verschiedene Algorithmen. Dabei ist zu berücksichtigen, dass sich die Methoden hinsichtlich der Grenzen ihres Auflösungsvermögens unterscheiden. Mit einer Zusammenführung der Ergebnisse aller Methoden kann eine mehrere Längenskalen überdeckende Charakterisierung der Porenraumgeometrie erfolgen. Die Anwendung und Auswertung der verschiedenen Methoden werden am Beispiel von Baumberger Kalksandstein und Bentheimer Sandstein verglichen und diskutiert. T2 - 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Potsdam, Germany DA - 27.03.2017 KW - Spektral Induzierte Polarisation KW - Fraktale Dimension KW - MIP KW - Sandstein PY - 2017 AN - OPUS4-43246 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kruschwitz, Sabine A1 - Halisch, M. A1 - Prinz, Carsten A1 - Weller, Andreas A1 - Müller-Petke, M. A1 - Dlugosch, R. T1 - Towards a better understanding of electrical relaxation T2 - Proceedings of the Annual Symposium of the Society of Core Analysts (SCA) N2 - Other than commonly assumed the relaxation times observed in the electrical low-frequency range (1 mHz – 40 kHz) of natural porous media like sandstones and tuff stones cannot be directly related to the dominant (modal) pore throat sizes, measured (e.g.) with mercury intrusion porosimetry (MIP). Working with a great variety of sandstones from very different origins and featuring great variations in textural and chemical compositions as well as in geometrical pore space properties, it was observed that particularly samples with narrow pore throats were characterized by long (low-frequency) relaxations. These, however, can (following the current theories) be rather explained by long “characteristic length scales” in these media or low diffusion coefficients along the electrical double layer. However, there is no straightforward way (or single approved method) of getting reliable numbers for properties such as the lengths of pore throats, the diameter and length of the wide pores and their respective distributions. Consequently we follow a multi-methodical approach and combine the benefits of MIP, micro-computed tomography (μ-CT) and nuclear magnetic resonance (NMR) to achieve much deeper insight due to the different resolutions and sensitivities to either pore constrictions (throats) or wide pores. This helps us to understand, whether the observed electrical relaxation phenomena actually depend on geometric length scales or rather on other properties such as chemical composition, clay content, clay type or cation exchange capacity. In this paper, we showcase selected results of a systematic study of a total of 16 sandstones and three tuffs. Findings and the particular advantage of the used method combination are discussed and shown in detail for a representative sample selection. T2 - Annual Symposium of the Society of Core Analysts (SCA) CY - Vienna, Austria DA - 28.08.2017 KW - Electrical relaxation KW - Complex resistivity KW - Spectral induced polarization KW - Nuclear magnetic resonance KW - Mercury intrusion porosimetry KW - Pore size distribution KW - Sandstone PY - 2017 VL - SCA2017-080 SP - 1 EP - 9 AN - OPUS4-42599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Halisch, Matthias A1 - Kruschwitz, Sabine A1 - Weller, Andreas A1 - Mensching, Bernadette A1 - Gürlich, Lucinda T1 - Maximizing the core value – joint investigations with special emphasis on complex electrical conductivity give new insights into Fontainebleau Sandstone T2 - Proceedings of the Annual Symposium of the Society of Core Analysts 2017 N2 - Within this study we have shown, that spectral induced polarization is a reliable method for the enhanced characterization of the Fontainebleau sandstone in general, and for its related stratigraphical units in particular. Due to its high sensitivity towards pore network and pore surface changes, different stratigraphical units can be clearly differentiated and probably even classified. We have observed a good correlation between the maximum of the SIP phase shift and the dominant pore throat radius for this rock type, as it has been reported for others sandstones before [20]. T2 - Annual Symposium of the Society of Core Analysts CY - Vienna, Austria DA - 27.08.2017 KW - Spectral induced polarization KW - µ-CT KW - ESEM KW - Fontainebleau Sandstone PY - 2017 SP - 035, 1 EP - 035, 9 AN - OPUS4-43079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gürlich, L. A1 - Kruschwitz, Sabine A1 - Halisch, M. A1 - Weller, Andreas T1 - SIP Messungen an Fontainebleau Sandsteinen N2 - Die Methode der Spektral Induzierten Polarisation (SIP) wird eingesetzt, um hydraulische Parameter wie Porosität und Permeabilität von Gesteinen abzuleiten. Dabei wird ein Wechselstrom im Bereich von 1 mHz bis 45 kHz in das Gestein eingespeist und die Phasenverschiebung zwischen elektrischem Strom und Spannung gemessen, woraus die komplexe Leitfähigkeit berechnet wird. In dieser Arbeit werden die komplexen Leitfähigkeiten von Fontainebleau Sandsteinen mittels einer am Leibnitz-Institut für Angewandte Geophysik (LIAG) hergestellten Messzelle und einer SIP Apparatur des Forschungszentrums Jülich (FZJ) gemessen. Die Fontainebleau Sandsteine stammen aus Frankreich, südlich von Paris und zeichnen sich durch eine nahezu homogene Zusammensetzung aus Quartz aus. Für die Messungen wurden vier Blöcke mit jeweils vier Proben ausgewählt, die in Porosität und Permeabilität variieren. Für die SIP-Messungen werden die Gesteinsproben mit Natriumchlorid Lösung unterschiedlicher Leitfähigkeiten gesättigt, um die Abhängigkeit der IP-Spektren von der Leitfähigkeit des Porenfluids zu untersuchen. Die Messungen werden mit anderen petrophysikalischen Untersuchungen ergänzt, wie z.B. der Bestimmung der Porenradienverteilung mittels Quecksilberporosimetrie und der spezifischen inneren Oberfläche mit Gassorption (BET). Mit dem Raster-Ektronen-Mikroskop werden hochauflösende Bilder der inneren Gesteinsstruktur erzeugt und ausgewertet. Erste Ergebnisse der SIP-Messungen zeigen deutliche Phasenmaxima im niederfrequenten Bereich, die hinsichtlich ihrer Amplitude und Frequenzlage zwischen den Blöcken variieren. Ziel der Arbeit ist eine systematische Untersuchung der Polarisationseigenschaften bezüglich der Variabilität von Porosität, Porenradienverteilung, spezifischen inneren Oberfläche und Fluidleitfähigkeit, um die Zusammenhänge qualitativ und quantitativ zu charakterisieren. T2 - 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Potsdam, Germany DA - 27.03.2017 KW - Spektral Induzierte Polarisation KW - Fontainebleau Sandstein PY - 2017 AN - OPUS4-43243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -