TY - CONF A1 - Weller, Andreas A1 - Zhang, Zeyu A1 - Slater, L. A1 - Kruschwitz, Sabine A1 - Halisch, M. T1 - Induced polarization and pore radius - a discussion N2 - Permeability estimation from spectral induced polarization (SIP) measurements is based on a fundamental premise that the characteristic relaxation time (t) is related to the effective hydraulic radius (reff) controlling fluid flow. The approach requires a reliable estimate of the diffusion coefficient of the ions in the electrical double layer. Others have assumed a value for the diffusion coefficient, or postulated different values for clay versus clay-free rocks. We examine the link between t and reff for an extensive database of sandstone sampleswhere mercury porosimetry data confirm that reff is reliably determined from a modification of the Hagen-Poiseuille equation assuming that the electrical tortuosity is equal to the hydraulic tortuosity. Our database does not support the existence of 1 or 2 distinct representative diffusion coefficients but instead demonstrates strong evidence for 6 orders of magnitude of variation in an apparent diffusion coefficient that is well correlated with both reff and the specific surface area per unit pore volume (Spor). Two scenarios can explain our findings: (1) the length-scale defined by t is not equal to reff and is likely much longer due to the control of pore surface roughness; (2) the range of diffusion coefficients is large and likely determined by the relative proportions of the different minerals (e.g. silica, clays) making up the rock. In either case, the estimation of reff (and hence permeability) is inherently uncertain from SIP relaxation time. T2 - IP Workshop 2016 CY - Aarhus, Denmark DA - 06.06.2016 KW - pore radius KW - mercury intrusion capillary pressure KW - spectral induced polarization KW - relaxation time PY - 2016 AN - OPUS4-37116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weller, Andreas A1 - Zhang, Zeyu A1 - Slater, L. A1 - Kruschwitz, Sabine A1 - Halisch, M. T1 - Induced polarization and pore radius – a discussion N2 - Permeability estimation from spectral induced polarization (SIP) measurements is based on a fundamental premise that the characteristic relaxation time (t) is related to the effective hydraulic radius (reff) controlling fluid flow. The approach requires a reliable estimate of the diffusion coefficient of the ions in the electrical double layer. Others have assumed a value for the diffusion coefficient, or postulated different values for clay versus clay-free rocks. We examine the link between t and reff for an extensive database of sandstone samples where mercury porosimetry data confirm that reff is reliably determined from a modification of the Hagen-Poiseuille equation assuming that the electrical tortuosity is equal to the hydraulic tortuosity. Our database does not support the existence of 1 or 2 distinct representative diffusion coefficients but instead demonstrates strong evidence for 6 orders of magnitude of variation in an apparent diffusion coefficient that is well correlated with both reff and the specific surface area per unit pore volume (Spor). Two scenarios can explain our findings: (1) the length-scale defined by t is not equal to reff and is likely much longer due to the control of pore surface roughness; (2) the range of diffusion coefficients is large and likely determined by the relative proportions of the different minerals (e.g. silica, clays) making up the rock. In either case, the estimation of reff (and hence permeability) is inherently uncertain from SIP relaxation time. T2 - IP Workshop 2016 CY - Aarhus, Denmark DA - 06.06.2016 KW - Pore radius KW - Mercury intrusion capillary pressure KW - Spectral induced polarization KW - Relaxation time PY - 2016 AN - OPUS4-37003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -