TY - JOUR A1 - Niederleithinger, Ernst A1 - Weller, Andreas A1 - Lewis, R. T1 - Evaluation of geophysical techniques for dike inspection N2 - After some river embankment failures during recent floods in Germany, major investigation and improvement programs for river embankments have been implemented. Presently, the investigation mainly relies on existing documentation, visual inspection, and drilling and sampling. Geophysical techniques, which are applied non-destructively from the surface, have the potential to cover the gaps between sampling points and to enhance the reliability of subsurface information. This paper describes the evaluation results for resistivity, electromagnetic, seismic and GPR techniques acquired at a test site along the Mulde River in eastern Germany. The work was carried out under the government funded project DEISTRUKT. Each geophysical method has its own specific advantages and limitations. Keeping the requirements posed by current German guidelines for river embankments in mind, 2–D electrical resistivity tomography (ERT) is the method of first choice. However, all geophysical results have to be calibrated carefully using information, such as material properties and depth of structures, determined from boreholes. Although some recommendations are provided here, a set of detailed recommendations have been compiled in a handbook. KW - Dikes KW - Embankments KW - Flood KW - Geophysics KW - Geotechnics KW - Evaluation PY - 2012 U6 - https://doi.org/10.2113/JEEG17.4.185 SN - 1083-1363 VL - 17 IS - 4 SP - 185 EP - 195 PB - EEGS CY - Denver, Colo., USA AN - OPUS4-27490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Andreas A1 - Zhang, Z. A1 - Slater, L. A1 - Kruschwitz, Sabine A1 - Halisch, M. T1 - Induced polarization and pore radius — A discussion N2 - Permeability estimation from induced polarization (IP) measurements is based on a fundamental premise that the characteristic relaxation time τ is related to the effective hydraulic radius reff controlling fluid flow. The approach requires a reliable estimate of the diffusion coefficient of the ions in the electrical double layer. Others have assumed a value for the diffusion coefficient, or postulated different values for clay versus clay-free rocks. We have examined the link between a widely used single estimate of τ and reff for an extensive database of sandstone samples, in which mercury porosimetry data confirm that reff is reliably determined from a modification of the Hagen-Poiseuille equation assuming that the electrical tortuosity is equal to the hydraulic tortuosity. Our database does not support the existence of one or two distinct representative diffusion coefficients but instead demonstrates strong evidence for six orders of magnitude of variation in an apparent Diffusion coefficient that is well-correlated with reff and the specific surface area per unit pore volume Spor. Two scenarios can explain our findings: (1) the length scale defined by τ is not equal to reff and is likely much longer due to the control of pore-surface roughness or (2) the range of diffusion coefficients is large and likely determined by the relative proportions of the different minerals (e.g., silica and clays) making up the rock. In either case, the estimation of reff (and hence permeability) is inherently uncertain from a single characteristic IP relaxation time as considered in this study. KW - Spectral induced polarisation KW - Pore radius KW - Permeability KW - Specific surface KW - Mercury intrusion PY - 2016 U6 - https://doi.org/10.1190/GEO2016-0135.1 SN - 0016-8033 SN - 1942-2156 VL - 81 IS - 5 SP - D519 EP - D526 AN - OPUS4-38393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin, Tina A1 - Nordsiek, S. A1 - Weller, Andreas T1 - Low-frequency impedance spectroscopy of wood N2 - The method of low-frequency impedance spectroscopy has been successfully applied in Earth sciences to characterize soils and rocks. The method uses the diagnosing power of complex electrical resistivity in a frequency range between 1 mHz and 1 kHz. In our study, the potential of this method has been explored for the investigation of wood. We observed remarkable differences in the resulting spectra of complex resistivity for different European and Tropical tree species. The data processing of the acquired low-frequency impedance spectra yields integrating parameters. The comparison of the integrating parameters with the mean pore diameter that has been separately determined for the tropical tree species indicates clear correlations. An additional investigation has revealed remarkable difference in the complex resistivity spectra between oil bearing and non-oil bearing sandal wood. This result and the relations between electrical parameters and structural parameters of wood indicate the prospective potential of low-frequency impedance spectroscopy. KW - Holz KW - Spektroskopie KW - ZfP KW - SIP KW - Nondestructive KW - Low-frequency impedance spectroscopy KW - Spectral induced polarization PY - 2015 U6 - https://doi.org/10.5171/2015.910447 SP - 1 EP - 9 PB - IBIMA Publ. AN - OPUS4-34811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zeyu A1 - Weller, Andreas A1 - Kruschwitz, Sabine T1 - Pore radius distribution and fractal dimension derived from spectral induced polarisation N2 - The pore size distribution provides a suitable description of the pore space geometry that can be used to investigate the fractal nature of the pore space or to determine a fractal dimension. Fractal dimension describes the size of geometric objects as a function of resolution. It can be integrated into models of permeability prediction. We investigated the fractal dimension of the pore volume of 11 Eocene sandstone samples from China. This study describes an approach to use spectral induced polarisation spectra to estimate the pore size distribution and to determine the fractal dimension of the pore volume. Additionally, the fractal dimension was derived from data of the capillary pressure curves from mercury intrusion and the transversal relaxation time distribution of nuclear magnetic resonance. For samples with an effective pore radius larger than 1 μm, good agreement exists between the values of fractal dimension derived from the three different methods, which implies the identification of similar pore structures. Spectral induced polarisation can be a non-invasive laboratory technique for the estimation of the pore size distribution, but the application of the methodology for field measurements remains a challenging problem considering the limited frequency range. KW - Pore radius distribution KW - Fractal dimension KW - Spectral induced polarization PY - 2017 U6 - https://doi.org/10.3997/1873-0604.2017035 SN - 1569-4445 VL - 15 IS - 6 SP - 625 EP - 632 PB - Wiley AN - OPUS4-43250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -