TY - CONF A1 - Weise, Frank A1 - Voland, Katja A1 - Meng, Birgit T1 - AKR unter kombinierten Einwirkungen - Rissbildungs- und Transportmechanismen T2 - 19. Internationale Baustofftagung (ibausil) T2 - 19. Internationale Baustofftagung (ibausil) CY - Weimar DA - 2015-09-16 PY - 2015 AN - OPUS4-34501 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Frank A1 - Voland, Katja A1 - Meng, Birgit ED - Ludwig, H.-M. T1 - AKR unter kombinierten Einwirkungen - Rissbildungs- und Transportmechanismen T2 - 19. Ibausil - Internationale Baustofftagung N2 - ln den letzten Jahren sind im deutschen Bundesautobahnnetz verstärkt Schäden an Betonfahrbahndecken aufgetreten, die mit einer Alkali-Kieselsäure-Reaktion (AKR) in Verbindung gebracht werden. Die damit einhergehende oft drastische Reduzierung der Nutzungsdauer der Betonfahrbahndecke führte zu einer starken Intensivierung der Forschung auf diesem Gebiet. Zentraler Forschungsgegenstand war bisher neben der Suche nach geeigneten präventiven betontechnologischen Maßnahmen vor allem die Entwicklung performanceorientierter Prüfverfahren zur AKR-Prävention. Dabei wurden insbesondere die klimatischen Einwirkungen auf die Betonfahrbahndecke und der externe Alkalieintrag zeitraffend simuliert. Die zusätzlich interagierenden mechanischen Einwirkungen aus dem Verkehr fanden bisher keine Berücksichtigung. Vor diesem Hintergrund verfolgt die 2011 eingerichtete und 2015 um weitere drei Jahre verlängerte DFG-Forschergruppe 1498 u. a. das Ziel, den Einfluss einer mechanisch induzierten Vorschädigung (Ermüdungsbeanspruchung) auf den AKR-Schädigungsprozess zu klären. Die hierfür erforderliche Beschreibung der vielfältigen interagierenden Schädigungs- und Transportprozesse erfordert eine enge Verknüpfung von Experimenten mit einer mehrskaligen Modellierung. Die experimentelle Basis bildet die mechanische Vorschädigung (Ermüdung) großformatiger Balken aus einem Fahrbahndeckenbeton mit einem erhöhten AKR-Schädigungspotenzial. Aus diesen Balken werden nach der Ermüdungsbeanspruchung kleinformatige Probekörper gewonnen, an denen die Auswirkungen der mechanischen Vorschädigung auf das Betongefüge und die interagierenden Transport- und Schädigungsprozesse analysiert werden. Das Teilprojekt der SAM hat in diesem Kontext die Aufgabe, ganzheitlich die Rissbildungsprozesse und den interagierenden Eintrag bzw. Auslaugung der Alkalien von der mechanisch induzierten Vorschädigung bis zum AKR-Schädigungsprozess in enger Abstimmung mit den Forschungspartnern zu untersuchen. Den Schwerpunkt dieses Beitrags bildet die Charakterisierung der Rissbildungsprozesse durch die mechanische Vorschädigung und ihrer Auswirkungen auf die interagierenden Transportprozesse. Das schließt die Vorstellung der hierfür angewandten innovative Prüftechniken und Prüfmethodologien ein. T2 - 19. Ibausil - Internationale Baustofftagung CY - Weimar, Germany DA - 16.09.2015 KW - Betonfahrdecke KW - Ermüdung KW - Transportprozess KW - Ultraschall KW - Schallemissionsanalyse KW - Computertomografie KW - Laser-induced breakldown spectroscopy PY - 2015 SN - 978-3-00-050225-5 VL - 1 SP - 1 - 1461 EP - 1 - 1471 AN - OPUS4-34864 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ehrig, Karsten A1 - Weise, Frank A1 - Paetsch, O. T1 - Quantitative Rissanalyse im Fahrbahndeckenbeton mit der 3D-Computertomographie T2 - DACH-Jahrestagung 2015 N2 - Die Dauerhaftigkeit von Fahrbahndeckenbetonen wird maßgebend von ihrer Mikrostruktur bestimmt. Diese erfährt durch die äußeren Einwirkungen durch Klima und Verkehr über die Nutzungsdauer eine signifikante Veränderung. Im Kontext der in den letzten Jahren verstärkt auftretenden Schadensfälle infolge der Alkali-Kieselsäure-Reaktion (AKR) im deutschen Bundesautobahnnetz stellt sich die Frage, in welchem Maße die ermüdungsinduzierte Betondegradation den Stofftransport und damit die AKR-induzierte Rissbildung begünstigt. Dabei kommt der hochauflösenden räumlichen Quantifizierung der Rissbildung eine zentrale Bedeutung zu und bildet die Basis für die Modellierung der sich überlagernden Schädigungsprozesse. Gegenstand dieses Beitrags ist die Darstellung der Leistungsfähigkeit der 3DComputertomographie (3D-CT) bei der quantitativen Rissanalyse in Betonen ohne und mit Ermüdungsbeanspruchung. Die Untersuchungen erfolgten dabei exemplarisch an Bohrkernen, die einem großformatigen Schwingbalken entnommen wurden. Zur Erreichung einer hinreichenden Ortsauflösung gelangte dabei die Region of Interest – Technik (ROI) zum Einsatz. Die Rissauswertung erfolgte mit einem gemeinsam vom ZIB und der BAM entwickelten Softwaretool für die automatisierte Risserkennung. So erlaubt dieses eine quantitative statistische Auswertung von Rissparametern, wie z.B. Risslänge, -breite und -orientierung. Die Notwendigkeit der automatisierten Rissauswertung beruht darauf, dass die Größe des CT-Datensatzes (mehrere GB) eine vollständige manuelle Segmentierung der Risse im 3D-Raum einen unverhältnismäßigen hohen Aufwand erfordert. Eine automatische Risserkennung liefert darüber hinaus noch weitere Daten, die eine nachträgliche Bearbeitung und Analyse der Risse erst möglich macht. Rissveränderungen über der Zeit können ebenfalls visualisiert und statistisch aufbereitet werden. T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 11.05.2015 KW - AKR KW - Beton KW - Risserkennung KW - In-situ CT KW - ZIBAmira KW - Bildverarbeitung PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-335295 SN - 978-3-940283-68-9 IS - DGZfP BB 152 SP - Mo.3.A.1, 1 EP - 11 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-33529 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -