TY - JOUR A1 - Kricheldorf, H.R. A1 - Mix, Renate A1 - Weidner, Steffen T1 - Poly(ester urethane)s derived from lactide, isosorbide, terephthalic acidm abd various diisocyanates N2 - Isosorbide-initiated oligomerizations of ʟ-lactide were preformed in bulk using SnCl2 as catalyst. The resulting telechelic OH-terminated oligoesters were in situ subjected to simultaneous polycondensation and polyaddition with mixtures of terephthaloyl chloride and diisocyanates. Most polymerizations were conducted with 4,4'-diisocyanatodiphenyl methane and 2,4-diisocyanato toluene. The consequences of excess diisocyanate and four different catalysts were studied. The isosorbide/lactide ratio and the terephthalic acid/diisocyanate ratio were varied. Number average molecular weights up to 15 kDa with polydispersities around 3–5 were obtained. Depending on the chemical structure of the copolyester and on the feed ratio, incorporation of urethane groups may reduce or enhance the glass-transition temperature, but the thermal stability decreases dramatically regardless of composition. KW - Cyclization KW - Isosorbide KW - Lactide KW - Polyaddition KW - Polycondensation KW - Polyesters KW - Polyurethanes PY - 2014 DO - https://doi.org/10.1002/pola.27069 SN - 0360-6376 SN - 0887-624X VL - 52 IS - 6 SP - 867 EP - 875 PB - Wiley CY - Hoboken, NJ AN - OPUS4-30299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen T1 - SnOct 2-Catalyzed Syntheses of Cyclic Poly (l-lactide) s with Catechol as Low-Toxic Co-catalyst N2 - Polymerizations of l-lactide in bulk at 160 or 180 °C were performed with 1/1 mixtures of catechol (CA) or 4-tert-butylcatechol (BuCA) and tin(II)-2-ethylhexanoate (SnOct2) as catalysts and a variation of the Lac/Cat ratio. Weight average molar masses (Mw) up to 170,000 g mol−1 were obtained with CA and up to 120,000 g mol−1 with BuCA. The cyclic structure of the resulting poly(l-lactide)s was proven by MALDI-TOF mass spectrometry and by comparison of their hydrodynamic volumes with those of commercial linear poly(l-lactide)s. The predominance of even-numbered cycles increased with lower temperatures and shorter polymerization times. This fnding indicates that the cyclic architecture is the results of a ring-expansion polymerization mechanism. Addition of silylated BuCA as co-catalyst was less favorable than addition of free BuCA. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Catechol KW - Toxicity PY - 2019 DO - https://doi.org/10.1007/s10924-019-01545-5 SP - 10924 PB - Springer AN - OPUS4-49210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Sn(II)2-ethylhexanoate-catalyzed polymerizations of L-lactide in solution – Solution grown crystals of cyclic Poly(L-Lactide)s N2 - L-lactide (LA) was polymerized in toluene by means of neat tin(II) 2-ethylhexanoate (SnOct2). Concentration, time and temperature were varied. The isothermally crystallized polyLAs (PLA) were characterized in the virgin state with regard to topology, molar mass, melting temperature (Tm), crystal modification, high or low Tm morphology, crystallinity and crystal thickness. Even a small amount of solvent favored cyclization relative to polymerization in bulk, so that cyclic polylactides were obtained at 115 ◦C and even at 95 ◦C. At all temperatures the α-modification of PLA was obtained along with crystallinities up to 90%. With 6 M solution the high Tm morphology with Tm’s > 190 ◦C was obtained at 115 ◦C. The crystal thickness of crystallites grown from solution at 115 ◦C was on the average 10–20% higher than that of PLA polymerized in bulk. At a polymerization temperature of 75 ◦C cyclization was incomplete and fewer perfect crystallites were formed. A new hypothesis for the crystal growth of cyclic polyLAs is proposed. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2022 DO - https://doi.org/10.1016/j.polymer.2022.125142 SN - 0032-3861 VL - 255 SP - 1 EP - 9 PB - Elsevier CY - Oxford AN - OPUS4-55283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen A1 - Thünemann, Andreas T1 - Poly(acrylic acid): A combined analysis with field-flow fractionation and SAXS N2 - Polyelectrolytes such as PAA and its salts are widely used, but are notoriously difficult to characterize due to their polyelectrolyte properties and broad molecular mass distributions. In this paper, we report on a new PAA analysis by combining asymmetrical flow field-flow fractionation and an advanced SAXS technique using an acoustic levitator to minimize background scattering. The proof-of-principle is demonstrated with a mixture of three standard PAAs with different molecular masses. Detailed information on the PAA fractions is available on radii of gyration, polymer contour lengths, and coil conformation. Our method is expected to be applicable for a wide range of water-soluble synthetic and natural polymers and ideal for molecular masses of 5 × 103–2 × 105 g · mol-1. KW - Fractionation of polymers KW - Molar mass distribution KW - Polyelectrolytes KW - Small-angle X-ray scattering KW - Water-soluble polymers PY - 2010 DO - https://doi.org/10.1002/macp.201000163 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 19 SP - 2148 EP - 2153 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H.R. A1 - Scheliga, F. T1 - Cyclization and dispersity of poly(alkylene isophthalate)s N2 - Poly(alkylene isophthalate)s were prepared by different methods, either in solution or in bulk. The SEC measurements were evaluated in such a way that all oligomers were included. In solution (monomer conc. 0.1–0.7 mol/L) large fractions of rings were formed and high dispersities (up to 12) were obtained, which disagree with theoretical predictions. Polycondensations in bulk did neither generate cyclics by 'back-biting' nor by end-to-end cyclization, when the maximum temperature was limited to 210 °C. The dispersities of these perfectly linear polyesters were again higher than the theoretical values. Regardless of the synthetic method monomeric cycles were never observed. Furthermore, SEC measurements performed in tetrahydrofuran and in chloroform and SEC measurements performed in three different institutes were compared. Finally, SEC measurements of five samples were performed with universal calibration and a correction factor of 0.71 ± 0.02 was found for normal calibration with polystyrene. KW - Cyclization KW - Polycondensation KW - Polyesters KW - Size exclusion chromatography KW - Cyclics KW - Dispersity KW - SEC KW - Universal calibration KW - MALDI mass spectrometry PY - 2016 DO - https://doi.org/10.1002/pola.27892 SN - 0360-6376 SN - 0887-624X VL - 54 IS - 1 SP - 197 EP - 208 PB - Wiley CY - Hoboken, NJ AN - OPUS4-33731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen T1 - About the influence of salicylic acid on tin(II)octanoate-catalyzed ring opening polymerizationof L-lactide N2 - L-Lactide was polymerized in bulk with tin(II)2-ethylhexanoate SnOct2) as catalyst and salicylic acid as cocatalyst. The Lac/Cat ratio, Cocat/Cat ratio, temperature and time were varied. Increasing Cocat/Cat ratios reduced both,polymerization rate and molecular weight. However,under optimized conditions high molar mass (Mw up to 178,000), colorless, cyclic polylactides were formed in a short time. A few polymerizations performed at 160 and 180°C with the combination of SnOct2 and silylated salicylic acid gave similar results. Neat tin II) salicylate was prepared from SnOct2 and used for REPs of L-lactide in bulk, but the results were not better than those obtained from combinations of SnOct2 and salicylic acid. Furthermore, dibutyltin salicylate was synthesized and used as catalyst for polymerizations of L-lactide in bulk at temperatures varying from 102 to 160°C. Cyclic polylactides with Mw’s up to 40,000 were the main reaction products. At 100–102°C a predominance of odd-numbered cycles was found proving a REP mechanism. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Ring-opening polymerization PY - 2019 DO - https://doi.org/10.1016/j.eurpolymj.2019.07.003 VL - 119 SP - 37 EP - 44 PB - Elsevier Ltd. AN - OPUS4-49211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the preparation of pollen grains for MALDI-TOF MS classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - MALDI KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment KW - Principal component analysis PY - 2017 DO - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 SN - 1661-6596 VL - 18 IS - 3 SP - 543-1 EP - 543-11 PB - MDPI AN - OPUS4-41733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenhagen, Jana A1 - Weidner, Steffen T1 - Detection limits of matrix-assisted laser desorption/ionisation mass spectrometry coupled to chromatography - a new application of solvent-free sample preparation N2 - The detection limits of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) by semi-online coupling with chromatography were investigated using various mixtures of polyethylene oxides (PEOs) with different end groups. In contrast to the common dried-droplet sample preparation technique, which results in an inhomogeneous sample-to-matrix ratio within the MALDI spot, the used coupling technique offers a very high reproducibility combined with surpassing sensitivity of a few femtograms over a broad range of sample-to-matrix ratios. These results are in correlation with the results of the recently established solvent-free MALDI-TOFMS method utilising the grinding approach and are also of assistance towards the more theoretical aspect of MALDI that suggests that there is no necessity for an analyte incorporation into a matrix crystal for excellent matrix-assistance. PY - 2005 DO - https://doi.org/10.1002/rcm.2256 SN - 0951-4198 SN - 1097-0231 VL - 19 IS - 24 SP - 3724 EP - 3730 PB - Wiley CY - Chichester AN - OPUS4-11859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen T1 - Polymer characterization using sophisticated liquid chromatographic techniques combined with MALDI- and ESI-TOF mass spectrometry T2 - 55th ASMS conference on Mass Spectrometry CY - Indianapolis, IN, USA DA - 2007-06-03 PY - 2007 AN - OPUS4-14745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen T1 - MALDI-MS zur Aufklärung des Mechanismus der homogen katalysierten Polymerisation flüssigkristalliner Seitengruppenmethacrylate T2 - III. BAM-Kolloquium zu "Anwendung von MALDI-MS zur Charakterisierung von synthetischen Polymeren" CY - Berlin, Germany DA - 1999-05-17 PY - 1999 AN - OPUS4-11301 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -