TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About the Influence of (Non-)Solvents on the Ring Expansion Polymerization of l-Lactide and the Formation of Extended Ring Crystals N2 - Ring-expansion polymerizations (REPs) catalyzed by two cyclic tin catalysts(2-stanna-1.3-dioxa-4,5,6,7-dibenzazepine [SnBiph] and 2,2-dibutyl-2-stanna-1,3-dithiolane [DSTL) are performed at 140 °C in bulk. Small amounts (4 vol%) of chlorobenzene or other solvents are added to facilitate transesterification reactions (ring–ring equilibration) in the solid poly(l-lactide)s. In the mass range up to m/z 13 000 crystalline PLAs displaying a so-called saw-tooth pattern in the MALDI-TOF mass spectra are obtained indicating the formation of extended-ring crystals. The characteristics of extended-ring crystallites and folded-ring crystallites are discussed. Furthermore, extremely high melting temperatures (Tm’s up to 201.2 °C) and melting enthalpies (𝚫Hm’s up to 106 J g−1)) are found confirming that 𝚫Hmmax, the 𝚫Hm of a perfect crystal, is around or above 115 J g−1 in contrast to literature data. KW - Polylactide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Crystals PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565038 DO - https://doi.org/10.1002/macp.202200385 SN - 1022-1352 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-56503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Ring-expansion polymerization (REP) of L-lactide with cyclic tin catalysts – About formation of extended ring crystals and optimization of Tm and ΔHm N2 - L-Lactide was polymerized in bulk at 140 °C with three different cyclic tin catalysts and the time was varied from 1 d up to 14 d. The MALDI TOF spectra confirmed the formation of cyclic polylactides (PLAs) and displayed a characteristic change of peak intensity distribution with formation of a “saw tooth pattern”. This pattern confirms a previous hypothesis that cyclic PLAs tend to form crystallites with extended ring conformation and relatively smooth surface. This type of crystallites is formed under thermodynamic control by transesterification on the surface of the crystallites. In this way PLAs with extraordinarily high melting temperatures (Tm's up to 200.6 °C) and extraordinarily high melting enthalpy were obtained (ΔHm's up to 105 J g−1). These ΔHm values require a revision of the maximum ΔHm value calculated in the literature for ideal PLA crystals. KW - Polylactide KW - MALDI-TOF MS KW - ring-expansion polymerization PY - 2022 DO - https://doi.org/10.1016/j.polymer.2022.125516 SN - 0032-3861 VL - 263 SP - 125516 PB - Elsevier Ltd. AN - OPUS4-56338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -