TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Sn(II)2-ethylhexanoate-catalyzed polymerizations of L-lactide in solution – Solution grown crystals of cyclic Poly(L-Lactide)s N2 - L-lactide (LA) was polymerized in toluene by means of neat tin(II) 2-ethylhexanoate (SnOct2). Concentration, time and temperature were varied. The isothermally crystallized polyLAs (PLA) were characterized in the virgin state with regard to topology, molar mass, melting temperature (Tm), crystal modification, high or low Tm morphology, crystallinity and crystal thickness. Even a small amount of solvent favored cyclization relative to polymerization in bulk, so that cyclic polylactides were obtained at 115 ◦C and even at 95 ◦C. At all temperatures the α-modification of PLA was obtained along with crystallinities up to 90%. With 6 M solution the high Tm morphology with Tm’s > 190 ◦C was obtained at 115 ◦C. The crystal thickness of crystallites grown from solution at 115 ◦C was on the average 10–20% higher than that of PLA polymerized in bulk. At a polymerization temperature of 75 ◦C cyclization was incomplete and fewer perfect crystallites were formed. A new hypothesis for the crystal growth of cyclic polyLAs is proposed. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2022 U6 - https://doi.org/10.1016/j.polymer.2022.125142 SN - 0032-3861 VL - 255 SP - 1 EP - 9 PB - Elsevier CY - Oxford AN - OPUS4-55283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Ring–Ring Equilibration in Solid, Even-Numbered Cyclic Poly(l-lactide)s and their Stereocomplexes N2 - Even-numbered cyclic poly(d-lactide) and poly(l-lactide) are prepared by ringexpansion polymerization. The cyclic pol(l-lactide) is annealed either at 120 or at 160 °C for several days. The progress of transesterification in the solid state is monitored by the formation of odd-numbered cycles via matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The changes of the crystallinity are monitored by differential scanning calorimetry, wideand small-angle x-ray scattering (WAXS and SAXS) measurements. Despite total even-odd equilibration at 160 °C, the crystallinity of poly(l-lactide) is not reduced. Furthermore, the crystallinity of the stereocomplexes of both cyclic polylactides do not decrease or vanish, as expected, when a blocky or random stereosequence is formed by transesterification. This conclusion is confirmed by 13C NMR spectroscopy. These measurements demonstrate that transesterification is a ring–ring equilibration involving the loops on the surfaces of the lamellar crystallites thereby improving crystallinity and 3D packing of crystallites without significant broadening of the molecular weight distribution. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506458 VL - 221 IS - 9 SP - 2000012 PB - Wiley-VCH Verlag AN - OPUS4-50645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Alcohol-initiated and Tin(II) 2-ethylhexanoate-catalyzed polymerization of L-lactide in bulk – About separate crystallization of cyclic and linear Poly (L-lactide)s N2 - Alcohol-initiated ROPs of L-Lactide were performed at 140 ◦C in bulk with variation of the initiator/catalyst ratio and time. Lower ratios favor the formation of cycles which upon annealing display a change of the MALDI mass peak distribution towards a new maximum with a “saw-tooth pattern” of the mass peaks representing the cycles. Such a pattern was not observed for the mass peak of the linear chains. The coexistence of these patterns indicate that linear and cyclic poly (L-lactide)s (PLA) crystallize in separate crystals, and that the crystallites of the cycles are made up by extended rings. High Tm and ΔHm values confirm that these extended-ring crystallites represent a thermodynamically optimized form of PLA. Experiments with preformed cyclic and linear PLAs support this interpretation. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2023 U6 - https://doi.org/10.1016/j.polymer.2023.126355 VL - 285 IS - 126355 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed and alcohol-initiated ROPs of L-lactide – About the influence of initiators on chemical reactions in the melt and the solid state N2 - SnOct2 (Sn(II) 2-ethylhexanoate) catalyzed ROPs of L-lactide were performed in bulk with eight different alcohols as initiators. The time was varied between 1 h and 24 h for all initiators. For two initiators the temperature was also lowered to 115 ◦C. Even-numbered chains were predominantly formed in all polymerizations at short times, but the rate of transesterification (e.g. even/odd equilibration) and the molecular weight distribution were found to depend significantly on the nature of the initiator. Observed transesterification reactions also continued in solid poly (L-lactide), and with the most active initiator, almost total equilibration was achieved even at 130 ◦C. This means that all chains including those of the crystallites were involved in transesterification reactions proceeding across the flat surfaces of the crystallites. The more or less equilibrated crystalline polylactides were characterized by DSC and SAXS measurements with regard to their melting temperature (Tm), crystallinity and crystal thickness. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Catalysts KW - SAXS PY - 2021 U6 - https://doi.org/10.1016/j.eurpolymj.2021.110508 VL - 153 SP - 110508 PB - Elsevier Ltd. AN - OPUS4-52633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-592934 SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Chatti, S. A1 - Kricheldorf, H. R. T1 - About the transformation of low Tm into high Tm poly(L-lactide)s by annealing under the influence of transesterification catalysts N2 - Cyclic polylactides were prepared in bulk at 170 °C, crystallized at 120 °C and then annealed at temperatures between 130 and 170 C with variation of catalyst, catalyst concentration and annealing time. The transformation of the initially formed low melting (LTm) crystallites, having melting temperatures (Tm) <180 °C into high melting (HTm) crystallites having Tm values > 189 °C was monitored by means of DSC measurements and characterized in selected cases by SAXS measurements. It was confirmed that the formation of HTm crystallites involves a significant growth of the thickness of the lamellar crystallites along with smoothing of their surface. Annealing at 170 °C for 1 d or longer causes thermal degradation with lowering of the molecular weights, a gradual transition of cyclic into linear chains and a moderate decrease of lamellar thickness. An unexpected result revealed by MALDI TOF mass spectrometry is a partial reorganization of the molecular weight distribution driven by a gain of crystallization enthalpy. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Annealing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521062 VL - 11 IS - 5 SP - 2872 EP - 2883 PB - Royal Society of Chemistry AN - OPUS4-52106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. A1 - Scheliga, F. T1 - Ring-expansion copolymerization of L-lactide and glycolide N2 - 1:1 Copolymerizations of glycolide (GL) and L-lactide (LA) is performed in bulk at 100°C and at 160°C with four cyclic tin catalysts. The resulting copolyesters are characterized by SEC measurements, 1H and 13C NMR spectroscopy and by MALDI TOF mass spectrometry. At 160°C and longer reaction time (22 h) nearly complete conversion of both monomers is achieved, and cyclic copolymers with nearly random sequences are formed. At shorter times (0.5-3.0 h, depending on catalyst) the conversion of LA is incomplete, and only cyclics having even numbers of lactyl units are obtained. At 100°C at 22 h again cycles mainly consisting of even numbered lactyl units are formed, but with even and odd numbers of glycolyl units. Copolymerization of lactide at 160°C with small amounts of GL show that formation of high Tm crystallites (Tm > 190°C) is hindered even when only > 2% of GL is added. For polyglycolide containing a smaller amount of lactide complete solubility in hexafluoroisopropanol is only observed around and above 20 mol% of lactide. KW - Ring-expansion polymerization KW - Copolymerization KW - MALDI-TOF MS KW - L-lactide KW - Glycolide KW - Crystallization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520270 SN - 1022-1352 VL - 22 IS - 3 SP - 307 PB - WileyVCH AN - OPUS4-52027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed ROPs of L-lactide initiated by acidic OH- compounds: Switching from ROP to polycondensation and cyclization N2 - Ring-opening polymerizations (ROPs) of L-lactide are performed in bulk at 130°C with tin(II) 2-ethylhexanoate as catalyst and various phenols of differentacidity as initiators. Crystalline polylactides having phenyl ester end groups are isolated, which are almost free of cyclics. The dispersities and molecular weights are higher than those obtained from alcohol-initiated ROPs under identical conditions. Polymerizations at 160°C yield higher molecular weights than expected from the monomer/initiator ratio and a considerable fraction of cycles. The fraction of cycles increases with higher reactivity of the ester end group indicating that the cycles are formed by end-to-end cyclization. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-540250 SN - 2642-4150 VL - 60 IS - 5 SP - 785 EP - 793 PB - Wiley AN - OPUS4-54025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Matrix-assisted laser desorption/ionization behavior of neat linear and cyclic poly(L-lactide)s and their blends N2 - Numerous new tin catalysts that enable the synthesis of cyclic polylactides with broad variation in their molecular mass were recently developed. The abundance of cyclics in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra is, however, frequently reported to greatly exceed that of linears. Thus, the MALDI ionization behavior of various end-capped linear poly(L-lactide)s and one cyclic poly(L-lactide) was investigated and compared. Neat compounds and various blends of cyclic and linear species were prepared and studied under identical conditions with regard to sample preparation and instrumental condition, except for the laser power. For this purpose, two different MALDI-TOF mass spectrometers were applied. Our results reveal that cyclics indeed show a slightly better ionization in MALDI, although their ionization as a neat compound seems to be less effective than that of linear polylactides. The ionization of most linear polylactides investigated does not depend on the end group structure. However, linear polylactides containing 12-bromododecyl end groups reveal an unexpected saturation effect that is not caused by fragmentation of the polymer or the end group, or by electronic saturation of the detector digitizer. Furthermore, polylactides with a 2-bromoethyl end group did not show such a saturation effect. An overestimation of cyclic species in MALDI-TOF mass spectra of poly(L-lactide)s must be considered, but the commonly assumed peak suppression of linear polymers in mixtures of both structures can be excluded. KW - Polylactide KW - MALDI-TOF MS KW - Blends KW - Ionization PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504216 VL - 34 SP - e8673 PB - Wiley Online Libary AN - OPUS4-50421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Spirocyclic bisphenoxides of Ge, Zr, and Sn as catalysts for ring-expansion polymerizations of L- and meso-lactide N2 - Spirocyclic phenoxides of germanium, zirconium, and tin were prepared from 2,20-dihydroxybiphenyl and 2,20-dihydroxy-1,10-binaphthyl. Ring-expansion polymerizations of L-lactide are mainly studied at 160 or 180 °C. The reactivity of the catalysts increases in the order: Zr < Ge < Sn. Regardless of catalyst, the weight-average molecular weights (Mw) never exceed 50,000 g mol−1. The resulting poly(L-lactide)s are optically pure and have a cyclic architecture. Decreasing temperature and time favor Formation of even-numbered cycles, and at 102 ° cyclics, almost free of odd-numbered rings are obtained. Analogous polymerizations of meso-lactide give similar results >120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too. KW - Cyclization KW - Polylactides KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Spirocyclic PY - 2018 U6 - https://doi.org/10.1002/pola.29259 SN - 0887-624X SN - 1099-0518 VL - 56 IS - 24 SP - 2730 EP - 2738 PB - Wiley Periodicals AN - OPUS4-46498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -