TY - JOUR A1 - Kricheldorf, H. R. A1 - Meyer, A. A1 - Weidner, Steffen T1 - High Tm Poly(l-lactide)s by Means of Bismuth Catalysts? N2 - One series of BiSub-catalyzed ring-opening polymerizations (ROPs) is per-formed at 160 °C for 3 days with addition of difunctional cocatalysts to find out, if poly(l-lactide) crystallizes directly from the reaction mixture. An analogous series is performed with monofunctional cocatalysts. High Tm crystal-lites (Tm > 190 °C) are obtained from all bifunctional cocatalysts, but not from all monofunctional ones. It is shown by means of SAXS measurements that the high Tm values are mainly a consequence of a transesterification–homogenization process across the lamellar surfaces resulting in thickness and smoothing of the surfaces. An unusual enthalpy-driven modification of the molecular weight distribution is found for samples that have crystallized during the polymerization. A third series of ROPs is performed at 170 °C for 2 h followed by annealing at 120 °C (2 h) to induce crystallization. Complete transformation of the resulting low Tm crystallites (Tm < 180 °C) into the high Tm crystallites by annealing at 170 °C for 1 d is not achieved, despite variation of the cocatalyst. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522777 SN - 1022-1352 VL - 222 IS - 8 SP - 19 PB - Wiley AN - OPUS4-52277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Polymerization of L-lactide with SnCl2: A Low Toxic and Eco-friendly Catalyst N2 - Polymerizations of L-lactide catalyzed either by neat SnCl2 or by SnCl2 + difunctional cocatalysts were conducted in bulk at 180, 160 and 140 °C with variation of the Lac/Cat ratio and time. With neat SnCl2 poly(L-lactide) having weight average molecular weights (uncorrected Mw’s) up to 190 000 g mol−1 were obtained mainly consisting of linear chains. Addition of salicylic acid or 1,1-bisphenol yielded a higher fraction of cyclic polylactides but lower molecular weights. Furthermore, SnCl2 was compared with Bu2SnCl2 and various other metal chlorides and the best results were obtained with SnCl2. With ethyl L-lactate as initiator SnCl2-catalyzed ROPs were performed at 120 °C and the lac/initiator ratio was varied. All these experiments were conducted under conditions allowing for comparison with ROPs catalyzed with neat Sn(II)-2-ethyhexanoate. Such a comparison was also performed with ε-caprolactone as monomer. KW - Catalyst KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520517 SN - 1566-2543 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-52051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) and tin(iv) acetates–switching from COOH terminated linear chains to cycles N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2 Oct2SnAc2. KW - Catalyst KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Tin acetates KW - Polylactide PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520831 SP - 1 EP - 12 PB - Wiley Online Library AN - OPUS4-52083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) andtin(iv) acetates–switching from COOH terminated linear chains to cycles N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130°C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2~Oct2SnAc2 KW - Polylactide KW - MALDI-TOF MS KW - Catalyst KW - Ring-opening polymerization KW - Tin acetates PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521923 VL - 59 IS - 5 SP - 439 EP - 450 PB - Wiley Online Library AN - OPUS4-52192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Reversible Polycondensations outside the Jacobson-Stockmayer Theory and a New Concept of Reversible Polycondensations N2 - L-Lactide was polymerized with tin(II)acetate, tin(II)2-ethyl hexanoate, diphenyltin dichloride and dibutyltin bis(pentafluorophenoxide) at 130 °C in bulk. When an alcohol was added as initiator, linear chains free of cycles were formed having a degree of polymerization (DP) according to the lactide/initiator (LA/In) ratio. Analogous polymerizations in the absence of an initiator yielded high molar mass cyclic polylactides. Quite similar results were obtained when ε-caprolactone was polymerized with or without initiator. Several transesterification experiments were conducted at 130 °C, either with polylactide or poly(ε-caprolactone) indicating that several transesterification mechanisms are operating under conditions that do not include formation of cycles by back-biting. Furthermore, reversible polycondensations (revPOCs) with low or moderate conversions were found that did not involve any kind of cyclization. Therefore, These results demonstrate the existence of revPOCs, which do neither obey the theory of irreversible polycondensation as defined by Flory nor the hypothesis of revPOCs as defined by Jacobson and Stockmayer. A new concept encompassing any kind of revPOCs is formulated in the form of a “polycondensation triangle”. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530831 VL - 12 IS - 35 SP - 5003 EP - 5016 PB - Royal Society for Chemistry AN - OPUS4-53083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Poly(L-lactide): Optimization of Melting Temperature and Melting Enthalpy N2 - Twice recrystallized L-lactide was polymerized with a dozen of different tin or bismuth catalysts in bulk at 160°C for 24 h and was annealed at 150°C afterwards. In two cases Tm values above 197.0°C were obtained. The parameters causing a scattering of the DSC data were studied and discussed. The samples prepared with SnCl2, 2,2-dibutyl-2-stanna-1,3-ditholane (DSTL) or cyclic tin(II) bisphenyldioxide (SnBiph) were subject to annealing programs with variation of time and temperatures, revealing that the Tm´s did not increase. However, an increase of Hm was achieved with maximum values in the range of 93-96 J g-1 corresponding to crystallinities off around 90%. Further studies were performed with once recrystallized L-lactide. Again, those samples directly crystallized from the polymerization process showed the highest Tm values. These data were compared with the equilibrium Tm0 and Hm0 data calculated by several research groups for perfect crystallites. A Tm0 of 213+/-2°C and a Hm0 of 106 J g-1 show the best agreement with the experimental data. The consequences of annealing for the thickness growth of crystallites are discussed on the basis of SAXS measurements. Finally, a comparison of cyclic and linear poly L-lactide)s is discussed. KW - Polylactide KW - MALDI-TOF MS KW - Transesterification PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538656 SP - 1 EP - 10 PB - Royal Society for Chemistry AN - OPUS4-53865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - High Tm linear poly(L-lactide)s prepared via alcohol-initiated ROPs of L-lactide N2 - Alcohol-initiated ROPs of L-lactide were performed in bulk at 160 °C for 72 h with variation of the catalyst or with variation of the initiator (aliphatic alcohols). Spontaneous crystallization was only observed when cyclic Sn(II) compounds were used as a catalyst. Regardless of initiator, high melting crystallites with melting temperatures (Tm) of 189–193 °C were obtained in almost all experiments with Sn(II) 2,2′-dioxybiphenyl (SnBiph) as catalyst, even when the time was shortened to 24 h. These HTm poly(lactide)s represent the thermodynamically most stable form of poly(L-lactide). Regardless of the reaction conditions, such high melting crystallites were never obtained when Sn(II) 2-ethylhexanoate (SnOct2) was used as catalyst. SAXS measurements evidenced that formation of HTm poly(L-lactide) involves growth of the crystallite thickness, but chemical modification of the crystallite surface (smoothing) seems to be of greater importance. A hypothesis, why the “surface smoothing” is more effective for crystallites of linear chains than for crystallites composed of cycles is discussed. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524330 VL - 11 IS - 23 SP - 14093 EP - 14102 PB - Royal Society of Chemistry AN - OPUS4-52433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-Expansion Polymerization of 𝝐-Caprolactone, Glycolide, and l-lactide with a Spirocyclic Tin(IV) Catalyst Derived from or 2,2′-Dihydroxy-1,1′-Binaphthyl – New Results and a Revision N2 - In contrast to other cyclic tin bisphenoxides, polymerizations of glycolide and l-lactide with the spirocyclic tin(IV) bis-1,1′-bisnapthoxide yield linear chains having a 1,1′-bisnapthol end group and no cycles. In the case of l-lactide, LA/Cat ratio and temperature are varied and at 160 °C or below, all polylactides mainly consist of even-numbered chains. A total predominance of even-numbered chains is also found for homopolymerization of glycolide, or the copolymerization of glycolide and l-lactide, when conducted <120 °C. Linear chains having a bisnaphthol end group are again the main reaction products of ring-expansion polymerizations (REP) of 𝝐-caprolactone, but above 150 °C cycles are also formed. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-541931 VL - 222 IS - 24 SP - 1 EP - 10 PB - Wiley VCH GmbH AN - OPUS4-54193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, C. A1 - Inutan, E. D. A1 - Chen, J. L. A1 - Mukeku, M. M. A1 - Weidner, Steffen A1 - Trimpin, S. A1 - Ni, C.-K. T1 - Toward understanding the ionization mechanism of matrix‐assisted ionization using mass spectrometry experiment and theory N2 - Matrix‐assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix‐assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum. Eleven MAI matrices were studied on a high‐vacuum time‐of‐flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3‐nitrobenzonitrile (3‐NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3‐NBN produces intact, highly charged ions of nonvolatile analytes in high‐vacuum TOF with the use of a laser, demonstrating that ESI‐like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3‐NBN matrix at 266 nm laser wavelength. 3‐NBN:analyte crystal morphology is, however, important in ion generation in high vacuum. The 3‐NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high‐vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices. KW - Ionization KW - MALDI-TOF MS KW - Mechanism PY - 2021 U6 - https://doi.org/10.1002/rcm.8382 VL - 35 IS - 51 SP - e8382 PB - John Wiley & Sons AN - OPUS4-49209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, A. A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROPs of L-lactide catalyzed by neat Tin(II)2-ethylhexanoate - Influence of the reaction conditions on Tm and ΔHm N2 - L-Lactide was polymerized by means of neat SnOct2 with variation of LA/Cat ratio, temperature and time. The resulting cyclic polylactides crystallized spontaneously at 160 °C or below, but needed nucleation via mechanical stress at 165 or 170 °C. All the crystalline polylactides obtained directly from ROP above 120 °C had melting temperatures (Tm) above 189 °C (up to 194.5 °C). SnOct2 also enabled transformation of low Tm poly(L-lactide)s (Tm <180 °C) into the high Tm m1odification by annealing, due to the impact of transesterification reactions in the interphase between the crystallites. The influence of crystallization temperature and annealing time on the crystal thickness was studied via SAXS measurements. A comparison with the crystallization and annealing experiments reported by Pennings and coworkers and Tsuji and Ikada is discussed, and a satisfactory agreement has been found, because those authors also studied polyLA samples containing SnOct2 in its active form. It is also demonstrated in this work that the high Tm modification cannot be obtained when the catalyst is removed or poisoned as it is true for commercial polylactides. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization PY - 2021 U6 - https://doi.org/10.1016/j.polymer.2021.124122 SN - 0032-3861 VL - 231 SP - 1 EP - 10 PB - Elsevier CY - Oxford AN - OPUS4-53194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -