TY - JOUR A1 - Gabriel, Stefan A1 - Schwarzinger, C. A1 - Schwarzinger, B. A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Matrix segregation as the major cause for sample inhomogeneity in MALDI dried droplet spots N2 - The segregation in dried droplet MALDI sample spots was analyzed with regard to the matrix-to-sample ratio using optical microscopy, MALDI imaging mass spectrometry (MALDI MSI) and IR imaging spectroscopy. In this context, different polymer/matrix/solvent systems usually applied in the analysis of synthetic polymers were investigated. The use of typical matrix concentrations (10 mg mL-1) in almost every case resulted in ring patterns, whereas higher concentrated matrix solutions always led to homogeneous sample spot layers. The data revealed that segregation is predominantly caused by matrix transport in the drying droplet, whereas polymer segregation seems to be only secondary. KW - MALDI KW - Imaging MS KW - Matrix segregation KW - Dried droplet KW - Sample preparation KW - Polymers PY - 2014 U6 - https://doi.org/10.1007/s13361-014-0913-0 SN - 1044-0305 VL - 25 IS - 8 SP - 1356 EP - 1363 PB - American Society for Mass Spectrometry CY - New York, NY AN - OPUS4-32582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalgic, Mete-Sungur A1 - Weidner, Steffen T1 - Solvent-free sample preparation for matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry ofpolymer blends N2 - Solvent-free sample preparation offers some advantages over solvent-based techniques, such as improved accuracy, reproducibility and sensitivity, for matrix-assisted laser desorption/ionization (MALDI) analysis. However, little or no information is available on the application of solvent-free techniques for the MALDI analysis of polymer blends. Solvent-free sample preparation by ball milling was applied with varying sample-to-matrix ratios for MALDI time-of-flight mass spectrometry analysis of various polymers, including polystyrenes, poly(methyl methacrylate)s and poly(ethylene glycol)s. The peak intensity ratios were compared with those obtained after using the conventional dried droplet sample preparation method. In addition, solvent-assisted milling was also applied to improve sample homogeneities. Depending on the sample preparation method used, different peak intensity ratios were found, showing varying degrees of suppression of the signal intensities of higher mass polymers. Ball milling for up to 30 min was required to achieve constant intensity ratios indicating homogeneous mixtures. The use of wet-assisted grinding to improve the homogeneity of the blends was found to be disadvantageous as it caused partial degradation and mass-dependent segregation of the polymers in the vials.The results clearly show that solvent-free sample preparation must be carefully considered when applied to synthetic polymer blends, as it may cause additional problems with regard to homogeneity and stability of the blends. KW - MALDI TOF MS KW - Sample preparation KW - Polymer blends KW - Solvent-free PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-598570 SN - 0951-4198 VL - 38 IS - 12 SP - 1 EP - 9 PB - Wiley online library AN - OPUS4-59857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -