TY - JOUR A1 - Falkenhagen, Jana A1 - Friedrich, Jörg Florian A1 - Schulz, Günter A1 - Krüger, Ralph-Peter A1 - Much, Helmut A1 - Weidner, Steffen T1 - Liquid Adsorption Chromatography near Critical Conditions of Adsorption coupled with Matrix-assisted Laser Desorption/Ionization Mass Spectrometry N2 - Chemical heterogeneities and molecular weight distributions of poly(ethylene oxide) (PEO)-co-polymethylene (PM) model oligomers, which are relevant to the synthesis of commonly used tensides, were investigated. For analytical characterization, the well-known principle of liquid adsorption chromatography at 'critical conditions' (LACCC) was modified. Near the critical conditions of adsorption of the PEO unit, e.g., at slight adsorption conditions of PM, the copolymers could be separated according to their PM chain length. The eluates were separated and single fractions of each peak were continuously transferred onto the MALDI target by means of a commercially available device. Simultaneously, the MALDI matrix solution was continuously added with a second pump. This procedure offers the possibility of the formation of homogeneous matrix-polymer textures. By MALDI-MS a complete characterization of the chemical composition (PEO and PM chain length) of each peak could be achieved. The obtained MALDI mass spectra of the eluates at different retention times could be used for the molecular weight calibration of the LAC system. In this way, an additional application of SEC, as in conventional 2D-chromatography, was avoided by using the MALDI method as quasi chromatographic separation KW - Liquid adsorption chromatography KW - Matrix-assisted laser desorption KW - Ionization mass spectrometry KW - Coupling methods KW - MALDI PY - 2000 U6 - https://doi.org/10.1080/10236660008034644 SN - 1023-666X SN - 1563-5341 VL - 5 SP - 549 EP - 562 PB - Gordon and Breach Publ. CY - Amsterdam AN - OPUS4-2168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gross, J.H. A1 - Weidner, Steffen T1 - Influence of Electric Field Strength and Emitter Temperature on Field Desorption Mass Spectra of Polyethylene Oligomers N2 - The influence of electric field strength and emitter temperature on dehydrogenation and C–C cleavage in field desorption (FD) mass spectrometry of polyethylene (PE) oligomers of average molecular weights ranging from 500 to 2000 is examined. Low mass oligomers yield molecular weight (MW) distributions that are basically in accordance with results from gel-permeation chromatography. For these materials, dehydrogenation can be greatly reduced by reduction of the emitter potential. Furthermore, the influence of emitter potential on MW distributions indicates the occurrence of field-induced C–C cleavages. Reliable MW distributions are more difficult to obtain from higher mass oligomers by FD-MS because of the need for higher field strength and higher emitter temperatures to effect their desorption/ionization. Experiments reveal that the application of FD-MS to PE oligomers is limited not only by field-induced but also by thermally-induced fragmentations. Even then, FD mass spectra contain valuable information on mass range and homogeneity of PE samples up to about m/z 3600. PY - 2000 U6 - https://doi.org/10.1255/ejms.300 SN - 1469-0667 SN - 1356-1049 SN - 1365-0718 IS - 6 SP - 11 EP - 17 PB - IM Publications CY - Chichester AN - OPUS4-11098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -