TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molecular weight poly(l-lactide) via ring-opening polymerization with bismuth subsalicylate-The role of cocatalysts JF - Journal of Applied Polymer Science N2 - The catalytic potential of bismuth subsalicylate (BiSub), a commercial drug, for ring-opening polymerization (ROP) of L-lactide was explored by variation of co-catalyst and polymerization time. Various monofunctional phenols or carboxylic acids, aromatic ortho-hydroxy acids and diphenols were examined as potential co-catalysts. 2,2´-Dihydroxybiphenyl proved to be the most successful co-catalyst yielding weight average molecular weights (uncorrected Mw values up to 185 000) after optimization of reaction time and temperature. Prolonged heating (>1-2h) depending on catalyst concentration) caused thermal degradation. In polymerization experiments with various commercial Bi(III) salts a better alternative to BiSub was not found. By means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry a couple of unusual and unexpected transesterification reactions were discovered. Finally, the effectiveness of several antioxidants and potential catalyst poisons was explored, and triphenylphosphine was found to be an effective catalyst poison. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Bismuth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519513 DO - https://doi.org/10.1002/app.50394 SN - 0021-8995 VL - 138 IS - 19 SP - 50394 PB - Wiley AN - OPUS4-51951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - High Tm linear poly(L-lactide)s prepared via alcohol-initiated ROPs of L-lactide JF - RSC Advances N2 - Alcohol-initiated ROPs of L-lactide were performed in bulk at 160 °C for 72 h with variation of the catalyst or with variation of the initiator (aliphatic alcohols). Spontaneous crystallization was only observed when cyclic Sn(II) compounds were used as a catalyst. Regardless of initiator, high melting crystallites with melting temperatures (Tm) of 189–193 °C were obtained in almost all experiments with Sn(II) 2,2′-dioxybiphenyl (SnBiph) as catalyst, even when the time was shortened to 24 h. These HTm poly(lactide)s represent the thermodynamically most stable form of poly(L-lactide). Regardless of the reaction conditions, such high melting crystallites were never obtained when Sn(II) 2-ethylhexanoate (SnOct2) was used as catalyst. SAXS measurements evidenced that formation of HTm poly(L-lactide) involves growth of the crystallite thickness, but chemical modification of the crystallite surface (smoothing) seems to be of greater importance. A hypothesis, why the “surface smoothing” is more effective for crystallites of linear chains than for crystallites composed of cycles is discussed. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524330 DO - https://doi.org/10.1039/d1ra01990b VL - 11 IS - 23 SP - 14093 EP - 14102 PB - Royal Society of Chemistry AN - OPUS4-52433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) andtin(iv) acetates–switching from COOH terminated linear chains to cycles JF - Journal of Polymer Science A: Polymer Chemistry N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130°C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2~Oct2SnAc2 KW - Polylactide KW - MALDI-TOF MS KW - Catalyst KW - Ring-opening polymerization KW - Tin acetates PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521923 DO - https://doi.org/10.1002/pol.20200866 VL - 59 IS - 5 SP - 439 EP - 450 PB - Wiley Online Library AN - OPUS4-52192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the Preparation of Pollen Grains for MALDI-TOF MS Classification JF - International Journal of Molecular Sciences N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - PCA KW - MALDI-TOF MS KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392885 UR - http://www.mdpi.com/1422-0067/18/3/543/ DO - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 VL - 18 IS - 3 SP - 543 EP - 554 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-39288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic Polylactides via Simultaneous Ring-Opening Polymerization and Polycondensation Catalyzed by Dibutyltin Mercaptides JF - Journal of Polymer Science A - Polymer Chemistry N2 - L-Lactide is polymerized in bulk at 160 8C either with dibutyltin bis(benzylmercaptide) (SnSBzl), dibutyltin bis(benzothiazole 2-mercaptide) (SnMBT), or with dibutyltin bis(pentafluorothiophenolate) (SnSPF) as catalysts. SnSBzl yields linear polylactides having benzylthio-ester end groups in addition to cyclic polylactides, whereas SnMBT and SnSPF mainly or exclusively yield cyclic polylactides. This finding, together with model reactions, indicates that the SnS catalysts promote a combined ring-opening polymerization and polycondensation process including end-to-end cyclization. SnMBT caused slight racemization (3%–5%), when used at 160 8C. With SnSPF optically pure cyclic poly(L-lactide)s with high-molecular weights can be prepared at 160 8C. KW - Cyclopolymerization KW - Catalysts KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization PY - 2017 DO - https://doi.org/10.1002/pola.28762 VL - 55 IS - 22 SP - 3767 EP - 3775 PB - Wiley Periodicals AN - OPUS4-42600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. ED - Shaplov, A. T1 - Cyclization and dispersity of polyesters JF - Macomolecular Symposia N2 - Two classes of polyesters were prepared by irreversible polycondensations. The dependence of the dispersities on the experimental parameters such as synthetic method, chemical structure, molecular weight and initial monomer concentration was determined. At first it was demonstrated that it is essential for a correct calculation of Mn and Mw to include all oligomers down to the dimers in the evaluation of SEC curves. Furthermore, it was demonstrated for poly(e-caprolactone)s and polylactides that reversible polycondensations and ring-opening polymerizations with equilibration yield identical products. Finally, the dependence of the dispersity on various experimental Parameters was determined for equilibrated poly(e-caprolactone)s and polylactides. KW - Irreversible polycondensation KW - Polycaprolactone KW - Polylactide KW - Dispersity KW - MALDI-TOF MS PY - 2017 DO - https://doi.org/10.1002/masy.201600169 SN - 1022-1360 SN - 1521-3900 VL - 375 IS - 1 SP - Article 1600169, 1 EP - 6 PB - Wiley-VCH AN - OPUS4-42407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wessig, P. A1 - Schulze, T. A1 - Pfennig, A. A1 - Weidner, Steffen A1 - Prentzel, S. A1 - Schlaad, H. T1 - Thiol–ene polymerization of oligospiroketal rods JF - Polymer Chemistry N2 - The nucleophilic thiol–ene (thia-Michael) reaction between molecular rods bearing terminal thiols and bis-maleimides was investigated. The molecular rods have oligospiroketal (OSK) and oligospirothioketal (OSTK) backbones. Contrary to the expectations, cyclic oligomers were always obtained instead of linear rigid-rod polymers. Replacing the OS(T)K rods with a flexible chain yielded polymeric products, suggesting that the OS(T)K structure is responsible for the formation of cyclic products. The reason for the preferred formation of cyclic products is due to the presence of folded conformations, which have already been described for articulated rods. KW - Oligospiroketals KW - Polymerization KW - MALDI-TOF MS PY - 2017 DO - https://doi.org/10.1039/C7PY01569K SN - 1759-9954 SN - 1759-9962 VL - 8 IS - 44 SP - 6879 EP - 6885 PB - Royal Society of Chemistry AN - OPUS4-42685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Spirocyclic bisphenoxides of Ge, Zr, and Sn as catalysts for ring-expansion polymerizations of L- and meso-lactide JF - Journal of Polymer Science A: Polymer Chemistry N2 - Spirocyclic phenoxides of germanium, zirconium, and tin were prepared from 2,20-dihydroxybiphenyl and 2,20-dihydroxy-1,10-binaphthyl. Ring-expansion polymerizations of L-lactide are mainly studied at 160 or 180 °C. The reactivity of the catalysts increases in the order: Zr < Ge < Sn. Regardless of catalyst, the weight-average molecular weights (Mw) never exceed 50,000 g mol−1. The resulting poly(L-lactide)s are optically pure and have a cyclic architecture. Decreasing temperature and time favor Formation of even-numbered cycles, and at 102 ° cyclics, almost free of odd-numbered rings are obtained. Analogous polymerizations of meso-lactide give similar results >120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too. KW - Cyclization KW - Polylactides KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Spirocyclic PY - 2018 DO - https://doi.org/10.1002/pola.29259 SN - 0887-624X SN - 1099-0518 VL - 56 IS - 24 SP - 2730 EP - 2738 PB - Wiley Periodicals AN - OPUS4-46498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition JF - Scientific Reports N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465294 DO - https://doi.org/10.1038/s41598-018-34800-1 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - About formation of cycles in Sn(II) octanoate-catalyzed polymerizations of lactides JF - Journal of Polymer Science A: Polymer Chemistry N2 - At first, formation of cycles in commercial poly(Llactide)s is discussed and compared with benzyl alcoholinitiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4-cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end-biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of L-lactide were performed with various diphenols as initiators/co-catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even-numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring-expansion polymerization (REP). The influence of temperature, time, co-catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(L-lactide)s weight average molecular weights (Mw’s) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of Initiator and catalyst and temperature on the formation of cyclic poly(Llactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization KW - Transesterification PY - 2018 DO - https://doi.org/10.1002/pola.29077 SN - 0887-624X VL - 56 IS - 17 SP - 1915 EP - 1925 PB - Wiley Periodicals Inc. AN - OPUS4-46052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Cyclic poly(L-lactide)s via simultaneous ROP and polycondensation (ROPPOC) catalyzed by dibutyltin phenoxides JF - European Polymer Journal N2 - Starting from dibutyltin oxide, four catalysts were synthesized, namely the dibutyltin bisphenoxides of Phenol (SnPh), 4-chlorophenol (SnCP), 4-hydroxybenzonitrile (SnCN) and pentafluorophenol (SnOPF). With the first three catalysts polymerizations of L-lactide at 160 °C in bulk yielded large fraction of linear chains having phenylester end groups at short reaction times. At longer times the fraction of cycles considerably increased at the expense of the linear chains, when SnCN was used as catalyst. With SnOPF only cyclic polylactides were obtained at low Lac/Cat ratios (< 400) with weight average molecular weights (Mw) up to 90 000 Da, whereas for high Lac/Cat ratios mixtures of cyclic and linear chains were found. Polymerizations in solution enabled variation of the molecular weight. Polymerizations of meso-lactide at temperatures down to 60 °C mainly yielded even-numbered linear chains supporting the postulated ROPPOC mechanism. KW - Cyclization KW - MALDI-TOF MS KW - Polycondensation KW - Ring-opening Polymerization KW - Polylactide PY - 2018 DO - https://doi.org/10.1016/j.eurpolymj.2018.10.005 SN - 0014-3057 IS - 109 SP - 360 EP - 366 PB - Elsevier AN - OPUS4-46263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. T1 - Transesterification in alcohol-initiated ROPs of l- and meso-lactide catalyzed by Sn(II) and Sn(IV) compounds at low temperatures JF - Macromolecular Chemistry and Physics N2 - The purpose of this study is to shed more light on the transesterification processes in alcohol-initiated and tin(II) 2-ethylhexanoate (SnOct2)-catalyzed polymerizations of lactides at low or moderate temperatures. Ethanol-initiated polymerizations are conducted in concentrated solutions at 80 °C and a strong dependence of even/odd equilibration on the alcohol/Sn ratio. Around or above 120 °C cyclization of poly(l-lactide) via “backbiting” occurs as a third mechanism. However, poly(m-lactide) shows a higher cyclization tendency and yields cyclics even at 100 °C. Combinations of ethanol and certain cyclic dibutyltin(IV) catalysts also yield cyclic oligomers of l-lactide at 80 °C. Reaction conditions allowing for a total suppression of all transesterification reactions are not found, but even-numbered poly(m-lactide)s with a purity >95% are obtained at 70 or 60 °C. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Polylactide KW - Transesterification PY - 2018 DO - https://doi.org/10.1002/macp.201800445 SN - 1022-1352 SN - 1521-3935 VL - 219 IS - 24 SP - 1800445, 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-46705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Ring-Expansion Polymerization (REP) of L-lactide with cyclic Tin(II) Bisphenoxides JF - European Polymer Journal N2 - Five new cyclic catalysts were prepared by a new synthetic method from tin(II)-2-ethyhexanoate and silylated catechols, silylated 2,2´dihydroxybiphenyl or silylated 1,1´-bisnaphthol. These catalysts were compared with regard to their usefulness as catalysts for the ring expansion polymerization (REP) of L-lactide in bulk at 160 °C, and with two different tin(IV) derivatives of 1,1´binaphthol. Best results were obtained using seven-membered cyclic tin(II)bisphenoxides, which yielded colorless cyclic poly(l-lactide)s free of racemization with weight average molecular weights (Mw) up to 305 000 g mol-1. Furthermore, these catalysts were active even at a lactide/catalyst ratio of 20 000/1. Our new results were superior to those obtained from all other previously published catalysts yielding cyclic poly(L-lactide). The seven-membered cycles also proved to be more active than tin(II) 2-ethylhexanoate with and without the addition of alcohol. KW - Lactide KW - Cyclization KW - Ring-expansion polymerization KW - Tin(II)octanoate KW - MALDI-TOF MS PY - 2019 DO - https://doi.org/10.1016/j.eurpolymj.2019.04.024 SN - 0014-3057 SN - 1873-1945 VL - 116 SP - 256 EP - 264 PB - Elsevier Ltd. AN - OPUS4-47794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Cyclic polyglycolides via ring-expansion polymerization with cyclic tin catalysts JF - European Polymer Journal N2 - Glycolide was polymerized in bulk with two cyclic catalysts − 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzepane (SnBiph). The monomer/initiator ratio, temperature (140 – 180 °C) and time (1–––4 days) were varied. The MALDI TOF mass spectra exclusively displayed peaks of cyclic polyglycolide (PGA) and revealed an unusual “saw-tooth pattern” in the mass range below m/z 2 500 suggesting formation of extended ring crystallites. The DSC measurements indicated increasing crystallinity with higher temperature and longer time, and after annealing for 4 d at 160 °C a hitherto unknown and unexpected glass transition was found in the temperature range of 170–185 °C. Linear PGAs prepared by means of metal alkoxides under identical conditions did not show the afore-mentioned features of the cyclic PGAs, neither in the mass spectra nor in the DSC measurements. All PGAs were also characterized by SAXS measurements, which revealed relatively small L-values suggesting formation of thin crystallites in all cases with little influence of the reaction conditions. KW - Polyglycolide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Crystals PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595541 DO - https://doi.org/10.1016/j.eurpolymj.2024.112811 SN - 0014-3057 VL - 207 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-59554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Polycondensation of poly(L-lactide) alkyl esters combined with disproportionation and symproportionation of the chain lengths JF - Journal of Polymer Science A: Polymer Chemistry N2 - Ring-opening polymerizations (ROPs) of l-lactide (LA) were performed with ethyl l-lactate or 11-bromoundecanol as initiators (In) and tin(II) ethyl hexanoate (SnOct2) as catalyst (Cat) using four different LA/In ratios (20/1, 40/1, 60/1, and 100/1). One series of ROPs was conducted in bulk at 120 °C, yielding PLAs with low dispersities (Ð ~ 1.2–1.4), and a second series was conducted in bulk at 160 °C, yielding higher dispersities (Ð ~ 1.3–1.9). Samples from both series were annealed for 1 or 14 days at 140 °C in the presence of SnOct2. Both polycondensation and disproportionation reactions occurred, so that all four samples tended to form the same type of molar mass distribution below 10,000 Da, regardless of their initially different number average molar masses (Mn). Both initiators gave nearly identical results. The thermodynamic control of all reversible transesterification processes favored the formation of crystallites composed of chains with a Mn around 3500–3700, corresponding to a crystal thickness of 10–13 nm. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600081 DO - https://doi.org/10.1002/pol.20240118 SN - 2642-4150 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - Syntheses of Cyclic Poly(l-lactide)s by Means of Zinc-Based Ring-Opening Polymerization with Simultaneous Polycondensation (ROPPOC) Catalysts JF - Macromolecular Chemistry and Physics N2 - Ring-opening polymerizations of l-lactide are studied in bulk at 140 or 160 °C with zinc n-hexanoate, zinc 4-chlorothiophenolate, and zinc pentafluoro thiophenolate (ZnSPF) as catalysts. The reactivity increases in the given order. With all three catalysts a high fraction of cycles is obtained only at polymerization (annealing) times around 7 d. With ZnSPF weight average molecular weights (Mw) up to 178 000, a Tm around 199 °C and a 𝚫Hm around 99 J g−1 were achieved. The samples annealed for 4 or 7 d also display a saw tooth pattern of the mass peak distribution in the matrix-assisted laser desorption/ionization time of flight spectra indicating transesterification reactions across the surface of extended ring crystals. This process optimizes the thermodynamical properties of the crystalline cyclic polylactides and is responsible for the high Tm and 𝚫Hm values. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578264 DO - https://doi.org/10.1002/macp.202300070 SN - 1022-1352 SP - 202300070 PB - Wiley VHC-Verlag AN - OPUS4-57826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About the Influence of (Non-)Solvents on the Ring Expansion Polymerization of l-Lactide and the Formation of Extended Ring Crystals JF - Macromolecular Chemistry and Physics N2 - Ring-expansion polymerizations (REPs) catalyzed by two cyclic tin catalysts (2-stanna-1.3-dioxa-4,5,6,7-dibenzazepine [SnBiph] and 2,2-dibutyl-2-stanna-1,3-dithiolane [DSTL]) are performed at 140 °C in bulk. Small amounts (4 vol%) of chlorobenzene or other solvents are added to facilitate transesterification reactions (ring–ring equilibration) in the solid poly(l-lactide)s. In the mass range up to m/z 13 000 crystalline PLAs displaying a so-called saw-tooth pattern in the MALDI-TOF mass spectra are obtained indicating the formation of extended-ring crystals. The characteristics of extended-ring crystallites and folded-ring crystallites are discussed. Furthermore, extremely high melting temperatures (Tm’s up to 201.2 °C) and melting enthalpies (𝚫Hm’s up to 106 J g−1)) are found confirming that 𝚫Hm max, the 𝚫Hm of a perfect crystal, is around or above 115 J g−1 in contrast to literature data. KW - Polylactide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Biobased PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573063 DO - https://doi.org/10.1002/macp.202200385 VL - 224 IS - 5 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-57306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - About the crystallization of cyclic and linear poly(L-lactide)s in alcohol-initiated and Sn(II)2-ethylhexanoate- catalyzed ROPs of L-lactide conducted in solution JF - Polymer N2 - 1-Hydroxymethylnaphtalene (HMN) or 11-bromoundecanol (BUND) were used as initiators and Sn(II) 2-ethylhexanoate (SnOct2) as catalyst for ROPs of L-Lactide (LA) at 115 °C in bulk or in 4 M and 2M solutions in toluene. The LA/In ratio, the LA/Cat ratio and the time were varied. The matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectra exclusively displayed peaks of linear chains, when the ROPs were conducted in bulk. But in contrast to reports in the literature, mixtures of linear and cyclic poly(L-lactide) (PLA), were obtained, when the ROPs were performed in solution. The intensity distribution of the mass peaks of cyclic PLAs displayed a “saw-tooth pattern” after annealing in contrast to the mass peak distribution of the liner chains. This new phenomenon indicated that cyclic PLAs and linear PLAs crystallized in separate crystals from the same reaction mixture. This conclusion was confirmed by fractionated crystallization from 2 M solution, which confirmed that the cyclic PLAs nucleate and crystallize faster than the linear chains. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Crystallization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.125946 SN - 0032-3861 VL - 276 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-57308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Alcohol-initiated and Tin(II) 2-ethylhexanoate-catalyzed polymerization of L-lactide in bulk – About separate crystallization of cyclic and linear Poly (L-lactide)s JF - Polymer N2 - Alcohol-initiated ROPs of L-Lactide were performed at 140 ◦C in bulk with variation of the initiator/catalyst ratio and time. Lower ratios favor the formation of cycles which upon annealing display a change of the MALDI mass peak distribution towards a new maximum with a “saw-tooth pattern” of the mass peaks representing the cycles. Such a pattern was not observed for the mass peak of the linear chains. The coexistence of these patterns indicate that linear and cyclic poly (L-lactide)s (PLA) crystallize in separate crystals, and that the crystallites of the cycles are made up by extended rings. High Tm and ΔHm values confirm that these extended-ring crystallites represent a thermodynamically optimized form of PLA. Experiments with preformed cyclic and linear PLAs support this interpretation. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.126355 VL - 285 IS - 126355 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-ring equilibration (RRE) of cyclic poly(L-lactide)s by means of cyclic tin catalysts JF - European Polymer Journal N2 - With 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzoxepane (SnBiPh) as catalysts ring-expansion polymerizations (REP) were performed either in 2 M solution using three different solvents and two different temperatures or in bulk at 140 and 120 ◦C. A kinetically controlled rapid REP up to weight average molecular masses (Mẃs) above 300 000 was followed by a slower degradation of the molecular masses at 140 ◦C, but not at 120 ◦C Furthermore, a low molecular mass cyclic poly(L-lactide) (cPLA) with a Mn around 16 000 was prepared by polymerization in dilute solution and used as starting material for ring-ring equilibration at 140 ◦C in 2 M solutions. Again, a decrease of the molecular mass was detectable, suggesting that the equilibrium Mn is below 5 000. The degradation of the molecular masses via RRE was surprisingly more effective in solid cyclic PLA than in solution, and a specific transesterification mechanism involving loops on the surface of crystallites is proposed. This degradation favored the formation of extended-ring crystallites, which were detectable by a “saw-tooth pattern” in their MALDI mass spectra. KW - Organic Chemistry KW - Polymers and Plastics KW - MALDI-TOF MS KW - Materials Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593819 DO - https://doi.org/10.1016/j.eurpolymj.2024.112765 SN - 0014-3057 VL - 206 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Transformation of poly(L-lactide) crystals composed of linear chains into crystals composed of cycles JF - Polymer Chemistry N2 - A poly(L-lactide) with a trifluoroethyl ester end group and an average degree of polymerization (DP) of 50 was synthesized by ROP of L-lactide initiated with trifluoroethanol. Small-angle X-ray scattering (SAXS) in combination with differential scanning calorimetry (DSC) measurements revealed an average crystal thickness of 13 nm, corresponding to 45 repeat units. This suggests that most crystallites were formed by extended PLA chains, and both flat surfaces were covered by CF3 groups. The crystalline PLAs were annealed at 140 or 160 °C in the presence of two catalysts: tin(II) 2-ethylhexanoate, (SnOct2) or dibutyltin bis(pentafluorophenoxide) (BuSnPhF). The chemical reactions, such as polycondensation and cyclization, proceeded in the solid state and were monitored by matrix-assisted laser desorption/ionization time-offlight (MALDI TOF) mass spectrometry and gel permeation chromatography (GPC) measurements. Under optimal conditions a large fraction of linear chains was transformed into crystallites composed of extended cycles. Additionally, MALDI TOF MS analysis of GPC fractions from samples annealed for 28 or 42 days detected chain elongation of the linear species up to a factor of 20. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Transesterification PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597250 DO - https://doi.org/10.1039/D3PY01370G SN - 1759-9954 VL - 15 IS - 12 SP - 1173 EP - 1181 PB - Royal Society for Chemistry AN - OPUS4-59725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State JF - Polymer Chemistry N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592934 DO - https://doi.org/10.1039/d3py01232h SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -