TY - JOUR A1 - Yameen, B. A1 - Zydziak, N. A1 - Weidner, Steffen A1 - Bruns, M. A1 - Barner-Kowollik, C. T1 - Conducting polymer/SWCNTs modular hybrid materials via Diels-Alder ligation N2 - The development of a facile covalent strategy for the fabrication of organic conducting polymers (OCPs)/carbon nanotubes (CNTs) based molecular hybrid materials remains a challenge and is expected to address the detrimental intrinsic bundling issue of CNTs. In view of the pristine CNTs' ability to undergo Diels–Alder reactions with dienes, we report the synthesis of a novel poly(3-hexylthiophene) (P3HT) based organic conducting polymer (OCP) with terminal cyclopentadienyl (Cp) groups. The synthetic strategy employed is based on a combination of in situ end group functionalization via Grignard metathesis (GRIM) polymerization and a subsequent end group switching via reaction with nickelocene. Characterization data from Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI–TOF MS) fully support the successful synthesis of monofunctional Cp-capped P3HT, which was found to be highly reactive toward dienophile end-capped polystyrene (PS). The Cp-capped P3HT was subsequently ligated to the surface of pristine single walled CNTs (SWCNTs). The resulting P3HT/SWCNTs molecular hybrid material was characterized using thermogravimetric analysis (TGA), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), and high resolution transmission electron microscopy (HRTEM). The data from TGA, EA, and XPS were used to quantitatively deduce the grafting density. P3HT/SWCNTs prepared with Cp capped P3HT was found to contain 2 times more P3HT than the reference sample, featuring a grafting density of 0.0510 chains·nm–2 and a periodicity of 1 P3HT chain per 748 carbon atoms of the SWCNTs. HRTEM revealed individual SWCNTs wrapped with P3HT whereas in the reference sample P3HT was adsorbed on the bundles of the SWCNTs. The results presented here provide a new avenue for designing novel materials based on CNTs and OCPs. KW - Mass spectrometry KW - Polymers PY - 2013 DO - https://doi.org/10.1021/ma4004055 SN - 0024-9297 SN - 1520-5835 VL - 46 IS - 7 SP - 2606 EP - 2615 PB - American Chemical Society CY - Washington, DC AN - OPUS4-28575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chatti, S. A1 - Weidner, Steffen A1 - Fildier, A. A1 - Kricheldorf, H.R. T1 - Copolyesters of isosorbide, succinic acid, and isophthalic acid: biodegradable, high Tg engineering plastics N2 - Isosorbide, succinyl chloride and isophthaloyl chloride are polycondensed under various reaction conditions. The heating in bulk with or without catalysts as well in an aromatic solvent without catalyst, and polycondensation with the addition of pyridine only yield low molar mass copolyesters. However, heating in chlorobenzene with addition of SnCl2 or ZnCl2 produces satisfactory molar masses. The number average molecular weights (Mn) of most copolyesters fall into the range of 7000–15,000 Da with polydispersities (PD) in the range of 3–9. The MALDI-TOF mass spectra almost exclusively displayed peaks of cyclics indicating that the chain growth was mainly limited by cyclization and not by side reactions, stoichiometric imbalance or incomplete conversion. The glass-transition temperatures increased with the content of isophthalic acid from 75 to 180 °C and the thermo-stabilities also followed this trend. KW - Biodegradable KW - Cyclization KW - Cyclopolymerization KW - Isophthalic acid KW - Isosorbide KW - Polycondensation KW - Polyesters KW - Renewable resources KW - Succinic acid PY - 2013 DO - https://doi.org/10.1002/pola.26635 SN - 0360-6376 SN - 0887-624X VL - 51 IS - 11 SP - 2464 EP - 2471 PB - Wiley CY - Hoboken, NJ AN - OPUS4-28577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gille, M. A1 - Viertel, A. A1 - Weidner, Steffen A1 - Hecht, S. T1 - Modular synthesis of monomers for on-surface polymerization to graphene architectures N2 - We developed a modular synthesis of halogenated polycyclic aromatic monomers for on-surface polymerization to generate graphene wires, ribbons, and networks. KW - Graphene monomers KW - Graphene nanoribbons KW - Functionalized graphene nanoribbons KW - Graphene wires KW - Hexabenzocoronene KW - On-surface polymerization PY - 2013 DO - https://doi.org/10.1055/s-0032-1317959 SN - 0936-5214 SN - 1437-2096 VL - 24 IS - 2 SP - 0259 EP - 0263 PB - Thieme CY - Stuttgart AN - OPUS4-27621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Robinson, J.W. A1 - Secker, C. A1 - Weidner, Steffen A1 - Schlaad, H. T1 - Thermoresponsive poly(N-C3 glycine)s N2 - Ring-opening polymerization of N-substituted glycine N-carboxyanhydrides (NCAs) was applied to prepare a series of well-defined poly(N-C3 glycine)s (C3 = n-propyl, allyl, propargyl, and isopropyl), polypeptoids, with molecular weights in the range of 1.8–6.6 kg mol–1. Poly(N-isopropyl glycine), a previously unreported polypeptoid, could be obtained by bulk polymerization of the corresponding NCA in the melt. The samples were characterized by spectroscopy (NMR and FT-IR), size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI–ToF MS). The polymers could be dispersed in water up to 20–40 g L–1; the poly(N-propargyl glycine) was not soluble in water. Turbidity measurements of the three water-soluble polypeptoids illustrated cloud point temperatures dependent on structural and electronic properties of the side chain. The cloud point temperatures were found to increase in the order C3 = n-propyl (15–25 °C) < allyl (27–54 °C) < isopropyl (47–58 °C). Long-term annealing of the aqueous solution of poly(N-{n-propyl} glycine) and poly(N-allyl glycine) above the cloud point temperature resulted in the formation of crystalline microparticles with melting points of 188–198 and 157–165 °C (differential scanning calorimetry, DSC), respectively, and rose bud type morphology (scanning electron microscopy, SEM). PY - 2013 DO - https://doi.org/10.1021/ma302412v SN - 0024-9297 SN - 1520-5835 VL - 46 IS - 3 SP - 580 EP - 587 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen T1 - High Tg copolyesters of lactide, isosorbide and isophthalic acid N2 - Using SnCl2, ZnCl2, Zn-lactate or Zr-acetylacetonate as catalysts ʟ-lactide was oligomerized in bulk with isosorbide as initiator. The ratio isosorbide/lactide was varied from 8/2 to 2/8. The resulting oligomers were in situ polycondensed with isophthaloyl chloride in various aromatic solvents. In chlorobenzene homogeneous reaction mixtures were obtained, whereas molten copolyesters precipitated from toluene and xylene. The obtained average molecular weights indicated high polydispersities. According to MALDI-TOF MS the low molar mass reaction products (<4 kDa) almost exclusively consisted of cyclics with a composition depending on the feed ratio. The glass-transition temperatures (Tg) varied between the values of poly(ʟ-lactide (64 °C) and poly(isosorbide isophthalate) (180 °C). Four polyesters prepared from 5-tert-butyl isophthalic acid displayed higher Tg values. Differential thermoanalysis evidenced that the thermostability decreases with higher fractions of lactide, but processing from the melt seems to be feasible up to temperatures of 260 °C without risking degradation. KW - Lactide KW - Isosorbide KW - Ring-opening polymerization KW - Polycondensation KW - Cyclization PY - 2013 DO - https://doi.org/10.1016/j.eurpolymj.2013.05.007 SN - 0014-3057 SN - 1873-1945 VL - 49 IS - 8 SP - 2293 EP - 2302 PB - Elsevier CY - Oxford AN - OPUS4-29014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Scheliga, F. A1 - Kricheldorf, H.R. T1 - Low-temperature polymerization of epsilon-caprolactone catalyzed by cerium triflates N2 - Using 22 metal triflates as catalysts, ε-caprolactone is polymerized at 22 °C in bulk. Only five relatively acidic triflates prove active. Three triflates, including the neutral Sm3+, are active using water as initiator. A very low content of cyclics is found in all the experiments. With Ce3+ and Ce4+, polymerizations are performed in CH2Cl2 and in bulk at 2 °C and 22 °C. Low dispersities (down to 1.1) are obtained. At 22 °C, Ce4+ and, even better, Ce3+ also catalyze syntheses of CO2H- and CH2OH-terminated polycaprolactones, whereby higher dispersities and larger fractions of cyclics are obtained. Further polymerizations and polycondensations are catalyzed with protic acids. The results can be explained by a proton-catalyzed activated monomer mechanism. KW - Epsilon-caprolactone KW - Cyclization KW - Metal triflates KW - Polycondensation KW - Ring-opening polymerization PY - 2013 DO - https://doi.org/10.1002/macp.201300279 SN - 1022-1352 SN - 1521-3935 VL - 214 IS - 18 SP - 2043 EP - 2053 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, Z. A1 - Weidner, Steffen A1 - Risse, T. A1 - Hecht, S. T1 - The role of statistics and microenvironment for the photoresponse in multi-switch architectures: The case of photoswitchable oligoazobenzene foldamers N2 - Systems containing multiple photochromic units possibly display a synergistic interplay of individual switching events and hence potentially give rise to unprecedented photoresponsive behavior. Among such systems photoswitchable foldamers are attractive as the photoisomerization events are coupled to the helix–coil conformational transition. To gain comprehensive insight into the role of the number of switching units (statistics) as well as their specific location and relative orientation in the helix backbone, several series of foldamers have been synthesized and characterized. In these series of foldamers, the local environment of the photoswitchable units was precisely tuned as π,π-stacking interactions were enforced to occur between specific pairs, i.e. azobenzene–azobenzene, azobenzene–tolane, or phenylene–phenylene units. These particular arrangements are reflected not only in the stability of the helical conformation, but also affect the photoresponsive behavior, i.e. the rate of photoisomerization and extent of denaturation. Furthermore, determining the intramolecular spin–spin distance in a series of TEMPO-labeled foldamers with variable chain lengths and different spatial locations of the spin-labels deduced an independent verification of the photoinduced helix–coil transition by ESR spectroscopy. Quantitative analysis of the corresponding ESR spectra shows an excellent correlation of the extent of intramolecular spin–spin coupling and the intensity of the Cotton effect in CD spectroscopy. From all of these results an unusual relationship between the rate of photoisomerization and the extent of photoinduced denaturation could be unraveled, as they are not going hand-in-hand but compete with each other, i.e. the easier the individual switching event is, the harder it becomes to achieve a high degree of unfolding. This insight into the effect of microenvironment on the ease of individual switching events and the role of statistics on the resulting degree of the overall conformational transition is of general interest for the design of multi-switch architectures with improved photoresponse. KW - Polymers KW - Photoswitchable KW - Oligoazobenzene KW - Foldamers PY - 2013 DO - https://doi.org/10.1039/c3sc51664d SN - 2041-6520 SN - 2041-6539 VL - 4 IS - 11 SP - 4156 EP - 4167 PB - RSC CY - Cambridge AN - OPUS4-29814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Mix, Renate A1 - Weidner, Steffen T1 - Poly(ester urethane)s derived from lactide, isosorbide, terephthalic acidm abd various diisocyanates N2 - Isosorbide-initiated oligomerizations of ʟ-lactide were preformed in bulk using SnCl2 as catalyst. The resulting telechelic OH-terminated oligoesters were in situ subjected to simultaneous polycondensation and polyaddition with mixtures of terephthaloyl chloride and diisocyanates. Most polymerizations were conducted with 4,4'-diisocyanatodiphenyl methane and 2,4-diisocyanato toluene. The consequences of excess diisocyanate and four different catalysts were studied. The isosorbide/lactide ratio and the terephthalic acid/diisocyanate ratio were varied. Number average molecular weights up to 15 kDa with polydispersities around 3–5 were obtained. Depending on the chemical structure of the copolyester and on the feed ratio, incorporation of urethane groups may reduce or enhance the glass-transition temperature, but the thermal stability decreases dramatically regardless of composition. KW - Cyclization KW - Isosorbide KW - Lactide KW - Polyaddition KW - Polycondensation KW - Polyesters KW - Polyurethanes PY - 2014 DO - https://doi.org/10.1002/pola.27069 SN - 0360-6376 SN - 0887-624X VL - 52 IS - 6 SP - 867 EP - 875 PB - Wiley CY - Hoboken, NJ AN - OPUS4-30299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhmert, L. A1 - Girod, Matthias A1 - Hansen, Ulf A1 - Maul, Ronald A1 - Knappe, Patrick A1 - Niemann, B. A1 - Weidner, Steffen A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells N2 - Orally ingested nanoparticles may overcome the gastrointestinal barrier, reach the circulatory system, be distributed in the organism and cause adverse health effects. However, ingested nanoparticles have to pass through different physicochemical environments, which may alter their properties before they reach the intestinal cells. In this study, silver nanoparticles are characterised physicochemically during the course of artificial digestion to simulate the biochemical processes occurring during digestion. Their cytotoxicity on intestinal cells was investigated using the Caco-2 cell model. Using field-flow fractionation combined with dynamic light scattering and small-angle X-ray scattering, the authors found that particles only partially aggregate as a result of the digestive process. Cell viabilities were determined by means of CellTiter-Blue® assay, 4',6-diamidino-2-phenylindole-staining and real-time impedance. These measurements reveal small differences between digested and undigested particles (1–100 µg/ml or 1–69 particles/cell). The findings suggest that silver nanoparticles may indeed overcome the gastrointestinal juices in their particulate form without forming large quantities of aggregates. Consequently, the authors presume that the particles can reach the intestinal epithelial cells after ingestion with only a slight reduction in their cytotoxic potential. The study indicates that it is important to determine the impact of body fluids on the nanoparticles of interest to provide a reliable interpretation of their nano-specific cytotoxicity testing in vivo and in vitro. KW - Silver nanoparticles KW - In vitro digestion KW - Field-flow fractionation KW - Small-angle X-ray scattering KW - Dynamic light scattering KW - Caco-2 cells PY - 2014 DO - https://doi.org/10.3109/17435390.2013.815284 SN - 1743-5390 SN - 1743-5404 VL - 8 IS - 6 SP - 631 EP - 642 PB - Informa Healthcare CY - London AN - OPUS4-29926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gabriel, Stefan A1 - Pfeifer, Dietmar A1 - Schwarzinger, C. A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric imaging of synthetic polymer sample spots prepared using ionic liquid matrices N2 - RATIONALE Polymer sample spots for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) prepared by the dried-droplet method often reveal ring formation accompanied by possible segregation of matrix and sample molecules as well as of the polymer homologs itself. Since the majority of sample spots are prepared by this simple and fast method, a matrix or sample preparation method that excludes such segregation has to be found. METHODS Three different ionic liquid matrices based on conventionally used aromatic compounds for MALDI-TOF MS were prepared. The formation of ionic liquids was proven by 1H NMR spectroscopy. MALDI-Imaging mass spectrometry was applied to monitor the homogeneity. RESULTS Our results show a superior sample spot homogeneity using ionic liquid matrices. Spots could be sampled several times without visible differences in the mass spectra. A frequently observed loss of matrix in the mass spectrometer vacuum was not observed. The necessary laser irradiance was reduced, which resulted in less polymer fragmentation. CONCLUSIONS Ionic liquid matrices can be used to overcome segregation, a typical drawback of conventional MALDI dried-droplet preparations. Homogeneous sample spots are easy to prepare, stable in the MS vacuum and, thereby, improve the reproducibility of MALDI. PY - 2014 DO - https://doi.org/10.1002/rcm.6810 SN - 0951-4198 SN - 1097-0231 VL - 28 IS - 5 SP - 489 EP - 498 PB - Wiley CY - Chichester AN - OPUS4-30267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gabriel, Stefan A1 - Schwarzinger, C. A1 - Schwarzinger, B. A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Matrix segregation as the major cause for sample inhomogeneity in MALDI dried droplet spots N2 - The segregation in dried droplet MALDI sample spots was analyzed with regard to the matrix-to-sample ratio using optical microscopy, MALDI imaging mass spectrometry (MALDI MSI) and IR imaging spectroscopy. In this context, different polymer/matrix/solvent systems usually applied in the analysis of synthetic polymers were investigated. The use of typical matrix concentrations (10 mg mL-1) in almost every case resulted in ring patterns, whereas higher concentrated matrix solutions always led to homogeneous sample spot layers. The data revealed that segregation is predominantly caused by matrix transport in the drying droplet, whereas polymer segregation seems to be only secondary. KW - MALDI KW - Imaging MS KW - Matrix segregation KW - Dried droplet KW - Sample preparation KW - Polymers PY - 2014 DO - https://doi.org/10.1007/s13361-014-0913-0 SN - 1044-0305 VL - 25 IS - 8 SP - 1356 EP - 1363 PB - American Society for Mass Spectrometry CY - New York, NY AN - OPUS4-32582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koshkina, Olga A1 - Lang, Thomas A1 - Thiermann, R. A1 - Docter, D. A1 - Stauber, R.H. A1 - Secker, C. A1 - Schlaad, H. A1 - Weidner, Steffen A1 - Mohr, B. A1 - Maskos, M. A1 - Bertin, Annabelle T1 - Temperature-triggered protein adsorption on polymer-coated nanoparticles in serum N2 - The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle’s physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 µm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanoparticles and proteins and the accumulation of nanoparticles in a targeted body region. PY - 2015 DO - https://doi.org/10.1021/acs.langmuir.5b00537 SN - 0743-7463 SN - 1520-5827 VL - 31 IS - 32 SP - 8873 EP - 8881 PB - American Chemical Society CY - Washington, DC AN - OPUS4-34163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wettmarshausen, Sascha A1 - Friedrich, Jörg Florian A1 - Meyer-Plath, Asmus A1 - Kalinka, Gerhard A1 - Hidde, Gundula A1 - Weidner, Steffen T1 - Coating of carbon fibers with adhesion-promoting thin poly(acrylic acid) and poly(hydroxyethylmethacrylate) layers using electrospray ionization N2 - Thin coatings of poly(acrylic acid) (PAA) and poly(hydroxyethylmethacrylate) (PHEMA) were deposited onto carbon fibers by means of the electrospray ionization (ESI) technique in ambient air. These high-molecular weight polymer layers were used as adhesion promoters in carbon fiber–epoxy resin composites. Within the ESI process, the carbon fibers were completely enwrapped with polymer in the upper 10 plies of a carbon fiber roving. As identified with scanning electron microscopy also shadowed fibers in a bundle as well as backsides of fiber rovings were pinhole-free coated with polymers (‘electrophoretic effect'). Under the conditions used, the layers have a granular structure. Residual solvent was absent in the deposit. PAA and PHEMA films did not show any changes in composition and structure in comparison with the original polymers as analyzed by X-ray photo-electron spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Single-fiber pullout tests of coated fibers embedded in epoxy resin showed significantly increased interfacial shear strength. It is assumed that chemical bonds between carbon fiber poly(acrylic acid) and epoxy resin contribute significantly to the improved interactions. KW - Adhesion promotion KW - Thin polymer layers KW - Electrospray ionization (ESI) KW - Carbon fiber–epoxy resin laminates KW - Layer topography PY - 2015 DO - https://doi.org/10.1080/01694243.2015.1040980 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 15 SP - 1628 EP - 1650 PB - VNU Science Press CY - Utrecht AN - OPUS4-34564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen A1 - Lahcini, M. T1 - Multicyclic polyesters of trimesic acid and alkanediols and the theory of network formation N2 - Trimesoyl chloride is polycondensed with various alpha,omega'-alkanediols in dichloromethane at different concentrations using equifunctional feed ratios. As evidenced by MALDI-TOF (matrix assisted laser desorption/ionization-time of flight) mass spectrometry the soluble reaction products mainly consist of perfect multicyclic oligomers and polymers. The solphase extracted from the gels also consists of perfect multicycles. SEC (size exclusion chromatography) measurements show that both soluble reaction products and extracted solphases also contain a high molar mass fraction of perfect and nonperfect multicycles extending up to masses beyond 10 5 g mol-1. When the polycondensation is stopped after a few minutes perfect multicycles are already detectable in the reaction mixture along with functional (multi)cyclic oligomers. These results prove that at initial monomer concentrations < 0.2 mol L-1 networks and large multicyclic polymers are synthesized from functional cyclic oligomers formed in early stages of the polycondensation and not from hyperbranched polymers. This interpretation is presented as 'egg-first theory' and compared with the 'hen-first theory' of Stockmayer and Flory. KW - a2 + b3 polycondensation KW - Cyclization KW - MALDI KW - Multicyclic polymers KW - Networks PY - 2015 DO - https://doi.org/10.1002/macp.201500245 SN - 1022-1352 SN - 1521-3935 VL - 216 IS - 21 SP - 2095 EP - 2106 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-35282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, J.L. A1 - Lutomski, C.A. A1 - El-Baba, T.J. A1 - Siriwardena-Mahanama, B.N. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Allen, M. J. A1 - Trimpin, S. T1 - Matrix-assisted ionization-ion mobility spectrometry-mass spectrometry: Selective analysis of a europium-PEG complex in a crude mixture N2 - The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed. KW - Matrix-assisted ionization ion mobility spectrometry mass spectrometry KW - Europium KW - Poly(ethylene glycol) KW - Size-exclusion chromatography KW - Liquid chromatography at critical conditions KW - Electrospray ionization KW - Matrix-assisted laser desorption/ionization KW - Inductively coupled plasma-mass spectrometry KW - ESI KW - MALDI KW - SEC PY - 2015 DO - https://doi.org/10.1007/s13361-015-1233-8 SN - 1044-0305 VL - 26 IS - 12 SP - 2086 EP - 2095 PB - Elsevier CY - New York, NY AN - OPUS4-35283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Weidner, Steffen A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Taxonomic relationship of pollen from MALDI TOF MS data using multivariate statistics N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been suggested as a promising tool for the investigation of pollen, but the usefulness of this approach for classification and identification of pollen species has to be proven by an application to samples of varying taxonomic relations. KW - MALDI mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2015 DO - https://doi.org/10.1002/rcm.7207 SN - 0951-4198 SN - 1097-0231 VL - 29 SP - 1145 EP - 1154 PB - Wiley CY - Chichester AN - OPUS4-35296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gabriel, Stefan A1 - Steinhoff, R.F. A1 - Pabst, M. A1 - Schwarzinger, C. A1 - Zenobi, R. A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Improved analysis of ultra-high molecular mass polystyrenes in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using DCTB matrix and caesium salts N2 - Rationale The ionization of polystyrenes in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is typically achieved by the use of silver salts. Since silver salts can cause severe problems, such as cluster formation, fragmentation of polymer chains and end group cleavage, their substitution by alkali salts is highly desirable. Methods The influence of various cations (Ag+, Cs+ and Rb+) on the MALDI process of polystyrene (PS) mixtures and high mass polystyrenes was examined. The sample preparation was kept as straightforward as possible. Consequently, no recrystallization or other cleaning procedures were applied. Results The investigation of a polystyrene mixture showed that higher molecular polystyrenes could be more easily ionized using caesium, rather than rubidium or silver salts. In combination with the use of DCTB as matrix a high-mass polymer analysis could be achieved, which was demonstrated by the detection of a 1.1 MDa PS. Conclusions A fast, simple and robust MALDI sample preparation method for the analysis of ultra-high molecular weight polystyrenes based on the use of DCTB and caesium salts has been presented. The suitability of the presented method has been validated by using different mass spectrometers and detectors. KW - MALDI KW - Mega-dalton KW - Ionization KW - Caesium KW - Polystyrene KW - DCTB PY - 2015 UR - http://onlinelibrary.wiley.com/doi/10.1002/rcm.7197/full DO - https://doi.org/10.1002/rcm.7197 SN - 0951-4198 SN - 1097-0231 VL - 29 IS - 11 SP - 1039 EP - 1046 PB - Wiley CY - Chichester AN - OPUS4-33191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Sample loss in asymmetric flow field-flow fractionation coupled to inductively coupled plasma-mass spectrometry of silver nanoparticles N2 - In this work, sample losses of silver nanoparticles (Ag NPs) in asymmetrical flow field-flow fractionation (AF4) have been systematically investigated with the main focus on instrumental conditions like focusing and cross-flow parameters as well as sample concentration and buffer composition. Special attention was drawn to the AF4 membrane. For monitoring possible silver depositions on the membrane, imaging laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) was used. Our results show that the sample residue on the membrane was below 0.6% of the total injected amount and therefore could be almost completely avoided at low sample concentrations and optimized conditions. By investigation of the AF4 flows using inductively coupled plasma mass spectrometry (ICP-MS), we found the recovery rate in the detector flow under optimized conditions to be nearly 90%, while the cross-flow, slot-outlet flow and purge flow showed negligible amounts of under 0.5%. The analysis of an aqueous ionic Ag standard solution resulted in recovery rates of over 6% and the ionic Ag content in the sample was found to be nearly 8%. Therefore, we were able to indicate the ionic Ag content as the most important source of sample loss in this study. KW - Asymmetric flow filed-flow fractionation KW - ICP-MS KW - Nanoparticles KW - Sample loss KW - Quantification PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-336171 DO - https://doi.org/10.1039/c5ja00297d SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 10 SP - 2214 EP - 2222 PB - Royal Society of Chemistry CY - London AN - OPUS4-33617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Dispersities of Polyesters of Various Diphenols Prepared by Irreversible Polycondensations N2 - Polyesters of bisphenol-A, bisphenol-P, catechol, and sebacic acid are prepared and different synthetic methods are compared. The diphenols are condensed with sebacoyl chloride either in dichloromethane/pyridine or in refl uxing chlorobenzene without HCl-acceptor. Further- more, bisphenol-A acetate is polycondensed with sebacic acid in bulk. All experiments are worked up so that fractionation is avoided. The extent of cyclization is estimated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and the molar mass distribution by size exclusion chromatography (SEC). Polycondensations in solution yield larger fractions of cyclics and higher dispersities (up to 11). Polycondensations in bulk give lower fractions of cycles and dispersities from 4.6 to 6.3 for high molar mass polyesters or 2.8 to 3.5 for low molar mass products. Characteristic curves describing the dependence of the dispersity on the initial monomer concentration are elaborated. KW - cyclization KW - dispersity KW - mass spectra KW - polycondensation KW - polyesters PY - 2016 DO - https://doi.org/10.1002/macp.201600004 IS - 217 SP - 1361 EP - 1369 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-37120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lahcini, M. A1 - Weidner, Steffen A1 - Oumayama, J. A1 - Scheliga, F. A1 - Kricheldorf, H. R. T1 - Unsaturated Copolyesters of Lactide N2 - Four classes of unsaturated copolyesters of L-lactide were prepared either from isosorbide or bis(hydroxymethyl)tricyclodecane in combination with fumaric acid or from 1,4-butenediol or 1,4- butynediol with terephthalic acid. All syntheses were performed in such a way that lactide was oligomerized with a diol as the initiator and the resulting oligomers were polycondensed with a dicarboxylic acid dichloride either in a one-pot synthesis or in a two-step procedure. For most copolyesters the SEC measurements gave weight average molecular weights in the range of 30–60 kg mol⁻1 and dispersities in the range of 4.2–6.2. The MALDI-TOF mass spectra displayed a high content of cycles and indicated an irreversible kinetic course of all polycondensations. Glass-transition temperatures (Tg) above 90 °C were only found for two copolyesters of isosorbide. Addition of bromine to copolyesters of 1,4-butenediol yielded flame retarding biodegradable polymers. KW - Copolyester KW - MALDI-TOF MS KW - SEC KW - Lactide PY - 2016 DO - https://doi.org/10.1039/c6ra16008e VL - 2016/6 IS - 96 SP - 93496 EP - 93504 PB - Royal Society of Chemistry AN - OPUS4-37913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H.R. A1 - Scheliga, F. T1 - Cyclization and dispersity of poly(alkylene isophthalate)s N2 - Poly(alkylene isophthalate)s were prepared by different methods, either in solution or in bulk. The SEC measurements were evaluated in such a way that all oligomers were included. In solution (monomer conc. 0.1–0.7 mol/L) large fractions of rings were formed and high dispersities (up to 12) were obtained, which disagree with theoretical predictions. Polycondensations in bulk did neither generate cyclics by 'back-biting' nor by end-to-end cyclization, when the maximum temperature was limited to 210 °C. The dispersities of these perfectly linear polyesters were again higher than the theoretical values. Regardless of the synthetic method monomeric cycles were never observed. Furthermore, SEC measurements performed in tetrahydrofuran and in chloroform and SEC measurements performed in three different institutes were compared. Finally, SEC measurements of five samples were performed with universal calibration and a correction factor of 0.71 ± 0.02 was found for normal calibration with polystyrene. KW - Cyclization KW - Polycondensation KW - Polyesters KW - Size exclusion chromatography KW - Cyclics KW - Dispersity KW - SEC KW - Universal calibration KW - MALDI mass spectrometry PY - 2016 DO - https://doi.org/10.1002/pola.27892 SN - 0360-6376 SN - 0887-624X VL - 54 IS - 1 SP - 197 EP - 208 PB - Wiley CY - Hoboken, NJ AN - OPUS4-33731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zydziak, N. A1 - Konrad, W. A1 - Feist, F. A1 - Afonin, S. A1 - Weidner, Steffen A1 - Barner-Kowollik, C. T1 - Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation N2 - Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequencedefined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read.We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. KW - Photoligation KW - Copolymer sequence KW - MALDI-TOF MS/MS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391542 DO - https://doi.org/10.1038/ncomms13672 SN - 2041-1723 VL - 7 SP - Artikel Nr. 13672 AN - OPUS4-39154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinkönig, J. A1 - Bloesser, F. R. A1 - Huber, B. A1 - Welle, A. A1 - Trouillet, V. A1 - Weidner, Steffen A1 - Barner, L. A1 - Roesky, P. W. A1 - Yuan, J. A1 - Goldmann, A. S. A1 - Barner-Kowollik, C. T1 - Controlled radical polymerization and in-depth mass-spectrometric characterization of poly(ionic liquid)s and their photopatterning on surfaces N2 - The preparation and characterization of poly(ionic liquid)s (PILs) bearing a polystyrene backbone via reversible addition fragmentation chain transfer (RAFT) polymerization and their photolithographic patterning on silicon wafers is reported. The controlled radical polymerization of the styrenic ionic liquid (IL) monomers ([BVBIM]X, X = Cl− or Tf2N−) by RAFT polymerization is investigated in detail. We provide a general synthetic tool to access this class of PILs with controlled molecular weight and relatively narrow molecular weight distribution (2000 g mol−1 ≤ Mn ≤ 10 000 g mol−1 with dispersities between 1.4 and 1.3 for p([BVBIM]Cl); 2100 g mol−1 ≤ MP ≤ 14 000 g mol−1 for p([BVBIM]Tf2N)). More importantly, we provide an in-depth characterization of the PILs and demonstrate a detailed mass spectrometric analysis via matrix-assisted laser desorption ionization (MALDI) as well as – for the first time for PILs – electrospray ionization mass spectrometry (ESI-MS). Importantly, p([BVBIM]Cl) and p([DMVBIM]Tf2N) were photochemically patterned on silicon wafers. Therefore, a RAFT agent carrying a photoactive group based on ortho-quinodimethane chemistry – more precisely photoenol chemistry – was photochemically linked for subsequent controlled radical polymerization of [BVBIM]Cl and [DMVBIM]Tf2N. The successful spatially-resolved photografting is evidenced by surface-sensitive characterization methods such as X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The presented method allows for the functionalization of diverse surfaces with poly(ionic liquid)s. KW - reversible addition fragmentation chain transfer (RAFT) polymerization KW - polyionic liquids KW - mass spectrometry KW - surface modification PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355202 DO - https://doi.org/10.1039/C5PY01320H VL - 7 SP - 451 EP - 461 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-35520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Doriti, A. A1 - Brosnan, S. A1 - Weidner, Steffen A1 - Schlaad, H. T1 - Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base N2 - Polysarcosine (M-n = 3650-20 000 g mol(-1), D similar to 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator. KW - Polysarcosine KW - MALDI-TOF MS KW - Synthesis PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-359309 DO - https://doi.org/10.1039/c6py00221h SN - 1759-9954 SN - 1759-9962 VL - 7 IS - 18 SP - 3067 EP - 3070 AN - OPUS4-35930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A. A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis N2 - A reversed phase high performance liquid chromatography coupled to an inductively coupled Plasma mass spectrometer (HPLC–ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main Focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the Ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution. KW - ICP-MS KW - Silver nanoparticles KW - Speciation KW - High performance liquid chromatography KW - Isotope dilution analysis PY - 2016 DO - https://doi.org/10.1016/j.chroma.2016.09.028 SN - 0021-9673 VL - 1468 SP - 102 EP - 108 AN - OPUS4-37652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - The Role of Transesterification in SnOct 2 - Catalyzed Polymerizations of Lactides N2 - l-lactide or meso-lactide are polymerized either at 120 °C where the polymerization process of l-lactide is accompanied by crystallization, or at 180 °C where poly(l-lactide) remains in the molten state. Polymerizations at 120 °C initially yield even-numbered chains (with respect to lactic acid units) having relatively low dispersity, but the fraction of odd-numbered chains increases with time and the entire molecular weight distribution changes. Traces of cyclics are only formed after 7 d. Polymerizations at 180 °C yield equilibrium of even and odd-numbered chains from the beginning, but at low monomer/initiator ratios and short reaction times (<4 h) cyclics are again not formed. They appear at longer reaction times and entail higher dispersities. The results are discussed in terms of five different transesterification mechanisms. KW - Polylactides KW - MALDI KW - Transesterification KW - Sn catalysts PY - 2017 DO - https://doi.org/10.1002/macp.201600331 SN - 1022-1352 VL - 218 IS - 3 SP - 1600331 PB - Wiley AN - OPUS4-39753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Cyclic poly(l-lactide) via ring-expansion polymerization by means of dibutyltin 4-tert-butylcatecholate N2 - Five new catalysts are prepared from dibutyltin oxide and catechol (HCa), 2,3-dihydroxynaphthalene (NaCa), 4-tert-butyl catechol (BuCa), 4-cyano catechol (CyCa), and 4-benzoyl catechol (BzCa), but only BuCa gives useful results. When benzyl alcohol is used as an initiator, linear chains having benzyl ester end groups are formed in a slow polymerization process. In contrast to cyclic or noncyclic dibutyltin bisalkoxides, neat BuCa yields cyclic poly(l-lactide)s via a fast ring-expansion polymerization. Under certain conditions, a high-melting crystalline phase (Tm = 191 °C) is obtained. At 160 °C and short reaction times even-numbered cycles are slightly prevailing, but, surprisingly, at 120 °C, odd-numbered cycles are predominantly formed. These results definitely prove that a ring-expansion mechanism is operating. KW - Lactides KW - MALDI TOF MS KW - Morphology KW - Ring-opening polymerization KW - Tin catalysts PY - 2017 DO - https://doi.org/10.1002/macp.201700274 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 22 SP - 1700274, 1 EP - 1700274, 10 PB - Wiley VCH CY - Weinheim AN - OPUS4-43583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billing, Mark A1 - Gräfe, Christine A1 - Saal, Adrian A1 - Biehl, Philip A1 - Clement, Joachim A1 - Dutz, silvio A1 - Weidner, Steffen A1 - Schacher, Felix T1 - Zwitterionic Iron Oxide (γ-Fe2O3) Nanoparticles Based on P(2VP-grad-AA) Copolymers N2 - This study presents the synthesis and characterization of zwitterionic core–shell hybrid nanoparticles consisting of a core of iron oxide multicore nanoparticles (MCNPs, γ-Fe2O3) and a shell of sultonated poly(2-vinylpyridine-grad-acrylic acid) copolymers. The gradient copolymers are prepared by reversible addition fragmentation chain transfer polymerization of 2-vinylpyridine (2VP), followed by the addition of tert-butyl acrylate and subsequent hydrolysis. Grafting of P(2VP-grad-AA) onto MCNP results in P(2VP-grad-AA)@MCNP, followed by quaternization using 1,3-propanesultone-leading to P(2VPS-grad-AA)@MCNP with a zwitterionic shell. The resulting particles are characterized by transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis measurements, showing particle diameters of ≈70–90 nm and an overall content of the copolymer shell of ≈10%. Turbidity measurements indicate increased stability toward secondary aggregation after coating if compared to the pristine MCNP and additional cytotoxicity tests do not reveal any significant influence on cell viability. KW - Blockcopolymer KW - Controlled radical polymerization KW - Hybrid nanoparticles KW - Iron oxide nanoparticles KW - Sulfobetaines PY - 2017 DO - https://doi.org/10.1002/marc.201600637 SN - 1022-1336 SN - 1521-3927 VL - 38 IS - 4 SP - 1600637-1 EP - 1600637-8 PB - Wiley-VCH AN - OPUS4-39339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(L-lactide)s via ring-expansion polymerizations catalysed by 2,2-dibutyl-2- stanna-1,3-dithiolane N2 - L-Lactides were polymerized in bulk at 120 or 160 °C with cyclic dibutyltin catalysts derived from 1,2-dimercaptoethane or 2-mercaptoethanol. Only linear chains having one benzyl ester and one OH-end group were obtained when benzyl alcohol was added. When L-lactides were polymerized with neat dibutyl-2-stanna-1,3-dithiolane, exclusively cyclic polylactides were formed even at 120 °C. The temperature, time and monomer/catalyst ratio (M/C) were varied. These results are best explained by a combination of ring-expansion polymerization and ring-extrusion of cyclic oligo- or polylactides with Elimination of the cyclic catalyst. Neither syntheses of linear polylactides nor of cyclic lactides involved racemization up to 20 h at 160 °C. KW - Ring-expansion polymerization KW - MALDI KW - Polylactides PY - 2017 DO - https://doi.org/10.1039/C6PY02166B SN - 1759-9954 SN - 1759-9962 VL - 8 IS - 9 SP - 1589 EP - 1596 PB - Royal Society of Chemistry AN - OPUS4-39748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the Preparation of Pollen Grains for MALDI-TOF MS Classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - PCA KW - MALDI-TOF MS KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392885 UR - http://www.mdpi.com/1422-0067/18/3/543/ DO - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 VL - 18 IS - 3 SP - 543 EP - 554 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-39288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic Polylactides via Simultaneous Ring-Opening Polymerization and Polycondensation Catalyzed by Dibutyltin Mercaptides N2 - L-Lactide is polymerized in bulk at 160 8C either with dibutyltin bis(benzylmercaptide) (SnSBzl), dibutyltin bis(benzothiazole 2-mercaptide) (SnMBT), or with dibutyltin bis(pentafluorothiophenolate) (SnSPF) as catalysts. SnSBzl yields linear polylactides having benzylthio-ester end groups in addition to cyclic polylactides, whereas SnMBT and SnSPF mainly or exclusively yield cyclic polylactides. This finding, together with model reactions, indicates that the SnS catalysts promote a combined ring-opening polymerization and polycondensation process including end-to-end cyclization. SnMBT caused slight racemization (3%–5%), when used at 160 8C. With SnSPF optically pure cyclic poly(L-lactide)s with high-molecular weights can be prepared at 160 8C. KW - Cyclopolymerization KW - Catalysts KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization PY - 2017 DO - https://doi.org/10.1002/pola.28762 VL - 55 IS - 22 SP - 3767 EP - 3775 PB - Wiley Periodicals AN - OPUS4-42600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. ED - Shaplov, A. T1 - Cyclization and dispersity of polyesters N2 - Two classes of polyesters were prepared by irreversible polycondensations. The dependence of the dispersities on the experimental parameters such as synthetic method, chemical structure, molecular weight and initial monomer concentration was determined. At first it was demonstrated that it is essential for a correct calculation of Mn and Mw to include all oligomers down to the dimers in the evaluation of SEC curves. Furthermore, it was demonstrated for poly(e-caprolactone)s and polylactides that reversible polycondensations and ring-opening polymerizations with equilibration yield identical products. Finally, the dependence of the dispersity on various experimental Parameters was determined for equilibrated poly(e-caprolactone)s and polylactides. KW - Irreversible polycondensation KW - Polycaprolactone KW - Polylactide KW - Dispersity KW - MALDI-TOF MS PY - 2017 DO - https://doi.org/10.1002/masy.201600169 SN - 1022-1360 SN - 1521-3900 VL - 375 IS - 1 SP - Article 1600169, 1 EP - 6 PB - Wiley-VCH AN - OPUS4-42407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wessig, P. A1 - Schulze, T. A1 - Pfennig, A. A1 - Weidner, Steffen A1 - Prentzel, S. A1 - Schlaad, H. T1 - Thiol–ene polymerization of oligospiroketal rods N2 - The nucleophilic thiol–ene (thia-Michael) reaction between molecular rods bearing terminal thiols and bis-maleimides was investigated. The molecular rods have oligospiroketal (OSK) and oligospirothioketal (OSTK) backbones. Contrary to the expectations, cyclic oligomers were always obtained instead of linear rigid-rod polymers. Replacing the OS(T)K rods with a flexible chain yielded polymeric products, suggesting that the OS(T)K structure is responsible for the formation of cyclic products. The reason for the preferred formation of cyclic products is due to the presence of folded conformations, which have already been described for articulated rods. KW - Oligospiroketals KW - Polymerization KW - MALDI-TOF MS PY - 2017 DO - https://doi.org/10.1039/C7PY01569K SN - 1759-9954 SN - 1759-9962 VL - 8 IS - 44 SP - 6879 EP - 6885 PB - Royal Society of Chemistry AN - OPUS4-42685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeegers, G. P. A1 - Steinhoff, R. F. A1 - Weidner, Steffen A1 - Zenobi, R. T1 - Evidence for laser-induced redox reactions in matrix-assisted laserdesorption/ionization between cationizing agents and target plate material: a study with polystyrene and trifluoroacetate salts N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is often applied to assess the dispersity and the end groups of synthetic polymers through the addition of cationizing agents. Here weaddress how these cation adducts are formed using polystyrene (PS) as a model polymer. We analyzed PSby MALDI-MS with a 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix and a range of trifluoroacetate (TFA) salts as cationizing agents on a range of different targetplate materials (copper, 1.4301 stainless steel, aluminum, Inconel 625, Ti90/Al6/V4 and chromium-, gold-and silver-plated stainless steel). It was found that on a stainless steel substrate the metal cations Al+,Li+, Na+, Cu+and Ag+formed polystyrene adducts, whereas K+, Cs+, Ba2+, Cr3+, Pd2+, In3+, or their lower oxidation states, did not. For the copper and silver substrates, PS and DCTB adduct formation with cations liberated from these target plate materials was observed upon addition of a cationizing agent, which indicates the occurrence of redox reactions between the added TFA salts and the target plate material. Judging from their standard electrode potentials, these redox reactions would not normally occur, i.e.,they require an additional energy input, strongly suggesting that the observed redox reactions are laser-induced. Furthermore, copper granules were found to successfully sequester PS from a tetrahydrofuran(THF) solution, consistent with the view complex formation with the copper target plate can take place prior to the MALDI-MS measurement. KW - Polymer MALDI KW - Cationization KW - Polystyrene KW - Laser-induced redox reactions KW - Target plate material PY - 2017 DO - https://doi.org/10.1016/j.ijms.2016.10.007 SN - 1387-3806 SN - 1873-2798 VL - 416 SP - 80 EP - 89 PB - Elsevier B.V. AN - OPUS4-41146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-expansion polymerization of meso-lactide catalyzed by dibutyltin derivatives N2 - Meso-Lactide was polymerized in bulk at 60, 80, and 100 °C by means of three different types of catalysts: dibutyltinsulfides (2,2-dibutyl-2-stanna-1,3-dithiolane and 2,20-dibutyl-2-stanna-1,3-dithiane), dibutyltin derivatives of substituted cate-chols (BuCa, CyCa, and BzCa), and dibutyltin derivatives of2,2 dihydroxybiphenyl (SnBi) and 2,2-dihydroxy-1,10-binaphthyl(SnNa. Only the latter two catalysts were active at 60 °C. The architecture of the resulting polylactides depends very much on the structure of the catalyst and on the temperature. At the lowest temperature (60 °C), SnBi and SnNa mainly yielded even-numbered linear chains, but SnNa also yielded even-numbered cycles at 100 °C and short reaction times. In contrast,BuCa, CyCa, and BzCa mainly yielded odd-numbered cycles, although the same catalysts yielded even-numbered linear chains when benzylalcohol was added. KW - MALDI-TOF MS KW - Cyclisation KW - Catalysts KW - Polyester KW - Polymerization PY - 2018 DO - https://doi.org/10.1002/pola.28948 SN - 1099-0518 SN - 0022-3832 VL - 56 IS - 7 SP - 749 EP - 759 PB - Wiley Periodicals Inc. AN - OPUS4-44278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen T1 - High molar mass cyclic poly(L-lactide) via ring-expansion polymerizationwith cyclic dibutyltin bisphenoxides N2 - Two new catalysts (SnNa and SnBi) were prepared from dibutyltin oxide and 2,2′-dihydroxybiphenyl or2,2′dihydroxy(1,1′-binaphtyl). These catalysts enabled rapid polymerizations of L-lactide at 160 or 180 °C in bulk, whereby almost exclusively cyclic polylactides were formed. These polymerizations were free of racemization and yielded pol(L-lactide)s having weight average molecular weights (Mw's) up to 140 000 g mol−1. The Mw's varied little with the Lac/Cat ratio as expected for a ring expansion polymerization (REP). Polymerizations performed in bulk at 140, 120 and 102 °C yielded cyclic polylactides with lower molecular weights. At 102 °C a strong predominance of even-numbered cycles was found with SnNa as catalyst. SnNa can also catalyze alcohol-initiated ROPs yielding linear poly(L-lactide) free of cyclics. KW - MALDI-TOF MS KW - Polylactide KW - Ring-opening Polymerization KW - Cyclization KW - Catalysts PY - 2018 DO - https://doi.org/10.1016/j.eurpolymj.2018.05.036 SN - 0014-3057 SN - 1873-1945 VL - 105 SP - 158 EP - 166 PB - Elsevier Ltd. AN - OPUS4-45439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Lee, C. A1 - Weidner, Steffen A1 - El-Baba, T. A1 - Lutomski, C. A1 - Inutan, E. A1 - Foley, C. A1 - Ni, C.-K. A1 - McEwen, C. T1 - Unprecedented Ionization Processes in Mass SpectrometryProvide Missing Link between ESI and MALDI N2 - In the field of mass spectrometry,producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from bio-medical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser Ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around athird of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorp-tion/ionization. KW - MALDI KW - Electrospray KW - Mass spectrometry KW - Ionization PY - 2018 DO - https://doi.org/10.1002/cphc.201701246 SN - 1439-4235 SN - 1439-7641 VL - 19 IS - 5 SP - 581 EP - 589 PB - Wiley-VCH AN - OPUS4-44404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Sauerland, V. A1 - Barahona, C. A1 - Weidner, Steffen T1 - Multivariate analysis of MALDI imaging mass spectrometry data of mixtures of single pollen grains N2 - Mixtures of pollen grains of three different species (Corylus avellana, Alnus cordata, and Pinus sylvestris) were investigated by matrixassisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF imaging MS). The amount of pollen grains was reduced stepwise from > 10 to single pollen grains. For sample pretreatment, we modified a previously applied approach, where any additional extraction steps were omitted. Our results show that characteristic pollen MALDI mass spectra can be obtained from a single pollen grain, which is the prerequisite for a reliable pollen classification in practical applications. MALDI imaging of laterally resolved pollen grains provides additional information by reducing the complexity of the MS spectra of mixtures, where frequently peak discrimination is observed. Combined with multivariate statistical analyses, such as principal component analysis (PCA), our approach offers the chance for a fast and reliable identification of individual pollen grains by mass spectrometry. KW - MALDI Imaging MS KW - Pollen grains KW - Multivariate Statistics KW - Hierarchical cluster analysis KW - Principal component analysis PY - 2018 DO - https://doi.org/10.1007/s13361-018-2036-5 SN - 1044-0305 SN - 1879-1123 VL - 29 IS - 11 SP - 2237 EP - 2247 PB - Springer AN - OPUS4-45607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Weidner, Steffen T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes N2 - The effects of weathering exposure on unfilled and filled thermoplastic polyurethanes (TPU) materials are described as performed under different humidity conditions. For this purpose, a weathering device was used with UV-A 340 nm lamps at a constant temperature of 40 °C. The effects of environmental (UV and humidity condition) degradation on the frictional properties of TPU materials are presented along with surface analyses to characterize the chemistry of the degradative process. Photooxidative degradation of unfilled polymer leads to deterioration of physical and mechanical properties, which affects its tribological behavior significantly. Due to crosslinking, the stiffness of the material increases, reducing drastically the friction coefficient of unfilled TPUs. The frictional behavior of glass fiber reinforced TPU is less affected by radiation. KW - Photooxidation KW - UV radiation KW - Friction KW - TPU KW - Humidity PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.006 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 467 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Spirocyclic bisphenoxides of Ge, Zr, and Sn as catalysts for ring-expansion polymerizations of L- and meso-lactide N2 - Spirocyclic phenoxides of germanium, zirconium, and tin were prepared from 2,20-dihydroxybiphenyl and 2,20-dihydroxy-1,10-binaphthyl. Ring-expansion polymerizations of L-lactide are mainly studied at 160 or 180 °C. The reactivity of the catalysts increases in the order: Zr < Ge < Sn. Regardless of catalyst, the weight-average molecular weights (Mw) never exceed 50,000 g mol−1. The resulting poly(L-lactide)s are optically pure and have a cyclic architecture. Decreasing temperature and time favor Formation of even-numbered cycles, and at 102 ° cyclics, almost free of odd-numbered rings are obtained. Analogous polymerizations of meso-lactide give similar results >120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too. KW - Cyclization KW - Polylactides KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Spirocyclic PY - 2018 DO - https://doi.org/10.1002/pola.29259 SN - 0887-624X SN - 1099-0518 VL - 56 IS - 24 SP - 2730 EP - 2738 PB - Wiley Periodicals AN - OPUS4-46498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465294 DO - https://doi.org/10.1038/s41598-018-34800-1 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - About formation of cycles in Sn(II) octanoate-catalyzed polymerizations of lactides N2 - At first, formation of cycles in commercial poly(Llactide)s is discussed and compared with benzyl alcoholinitiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4-cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end-biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of L-lactide were performed with various diphenols as initiators/co-catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even-numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring-expansion polymerization (REP). The influence of temperature, time, co-catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(L-lactide)s weight average molecular weights (Mw’s) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of Initiator and catalyst and temperature on the formation of cyclic poly(Llactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization KW - Transesterification PY - 2018 DO - https://doi.org/10.1002/pola.29077 SN - 0887-624X VL - 56 IS - 17 SP - 1915 EP - 1925 PB - Wiley Periodicals Inc. AN - OPUS4-46052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Cyclic poly(L-lactide)s via simultaneous ROP and polycondensation (ROPPOC) catalyzed by dibutyltin phenoxides N2 - Starting from dibutyltin oxide, four catalysts were synthesized, namely the dibutyltin bisphenoxides of Phenol (SnPh), 4-chlorophenol (SnCP), 4-hydroxybenzonitrile (SnCN) and pentafluorophenol (SnOPF). With the first three catalysts polymerizations of L-lactide at 160 °C in bulk yielded large fraction of linear chains having phenylester end groups at short reaction times. At longer times the fraction of cycles considerably increased at the expense of the linear chains, when SnCN was used as catalyst. With SnOPF only cyclic polylactides were obtained at low Lac/Cat ratios (< 400) with weight average molecular weights (Mw) up to 90 000 Da, whereas for high Lac/Cat ratios mixtures of cyclic and linear chains were found. Polymerizations in solution enabled variation of the molecular weight. Polymerizations of meso-lactide at temperatures down to 60 °C mainly yielded even-numbered linear chains supporting the postulated ROPPOC mechanism. KW - Cyclization KW - MALDI-TOF MS KW - Polycondensation KW - Ring-opening Polymerization KW - Polylactide PY - 2018 DO - https://doi.org/10.1016/j.eurpolymj.2018.10.005 SN - 0014-3057 IS - 109 SP - 360 EP - 366 PB - Elsevier AN - OPUS4-46263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. T1 - Transesterification in alcohol-initiated ROPs of l- and meso-lactide catalyzed by Sn(II) and Sn(IV) compounds at low temperatures N2 - The purpose of this study is to shed more light on the transesterification processes in alcohol-initiated and tin(II) 2-ethylhexanoate (SnOct2)-catalyzed polymerizations of lactides at low or moderate temperatures. Ethanol-initiated polymerizations are conducted in concentrated solutions at 80 °C and a strong dependence of even/odd equilibration on the alcohol/Sn ratio. Around or above 120 °C cyclization of poly(l-lactide) via “backbiting” occurs as a third mechanism. However, poly(m-lactide) shows a higher cyclization tendency and yields cyclics even at 100 °C. Combinations of ethanol and certain cyclic dibutyltin(IV) catalysts also yield cyclic oligomers of l-lactide at 80 °C. Reaction conditions allowing for a total suppression of all transesterification reactions are not found, but even-numbered poly(m-lactide)s with a purity >95% are obtained at 70 or 60 °C. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Polylactide KW - Transesterification PY - 2018 DO - https://doi.org/10.1002/macp.201800445 SN - 1022-1352 SN - 1521-3935 VL - 219 IS - 24 SP - 1800445, 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-46705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen T1 - SnOct 2-Catalyzed Syntheses of Cyclic Poly (l-lactide) s with Catechol as Low-Toxic Co-catalyst N2 - Polymerizations of l-lactide in bulk at 160 or 180 °C were performed with 1/1 mixtures of catechol (CA) or 4-tert-butylcatechol (BuCA) and tin(II)-2-ethylhexanoate (SnOct2) as catalysts and a variation of the Lac/Cat ratio. Weight average molar masses (Mw) up to 170,000 g mol−1 were obtained with CA and up to 120,000 g mol−1 with BuCA. The cyclic structure of the resulting poly(l-lactide)s was proven by MALDI-TOF mass spectrometry and by comparison of their hydrodynamic volumes with those of commercial linear poly(l-lactide)s. The predominance of even-numbered cycles increased with lower temperatures and shorter polymerization times. This fnding indicates that the cyclic architecture is the results of a ring-expansion polymerization mechanism. Addition of silylated BuCA as co-catalyst was less favorable than addition of free BuCA. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Catechol KW - Toxicity PY - 2019 DO - https://doi.org/10.1007/s10924-019-01545-5 SP - 10924 PB - Springer AN - OPUS4-49210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen T1 - About the influence of salicylic acid on tin(II)octanoate-catalyzed ring opening polymerizationof L-lactide N2 - L-Lactide was polymerized in bulk with tin(II)2-ethylhexanoate SnOct2) as catalyst and salicylic acid as cocatalyst. The Lac/Cat ratio, Cocat/Cat ratio, temperature and time were varied. Increasing Cocat/Cat ratios reduced both,polymerization rate and molecular weight. However,under optimized conditions high molar mass (Mw up to 178,000), colorless, cyclic polylactides were formed in a short time. A few polymerizations performed at 160 and 180°C with the combination of SnOct2 and silylated salicylic acid gave similar results. Neat tin II) salicylate was prepared from SnOct2 and used for REPs of L-lactide in bulk, but the results were not better than those obtained from combinations of SnOct2 and salicylic acid. Furthermore, dibutyltin salicylate was synthesized and used as catalyst for polymerizations of L-lactide in bulk at temperatures varying from 102 to 160°C. Cyclic polylactides with Mw’s up to 40,000 were the main reaction products. At 100–102°C a predominance of odd-numbered cycles was found proving a REP mechanism. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Ring-opening polymerization PY - 2019 DO - https://doi.org/10.1016/j.eurpolymj.2019.07.003 VL - 119 SP - 37 EP - 44 PB - Elsevier Ltd. AN - OPUS4-49211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic poly(l-lactide) catalyzed by Bismuth salicylates-A combination of two drugs N2 - l‐lactide was polymerized in bulk at 160 or 180°C with mixtures of bismuth subsalicylate (BiSub) and salicylic (SA) as catalysts. The SA/Bi ratio and the monomer/Bi ratio were varied. The highest molecular weights (weight average, Mw) were achieved at a SA/Bi ratio of 1/1 (Mw up to 92 000 g mol−1). l‐Lactide was also polymerized with combinations of BiSub and silylated SA, and Mw values up to 120 000 g mol−1 were achieved at 180°C. MALDI‐TOF mass spectrometry and Mark‐Houwink‐Sakurada measurements proved that under optimized reaction conditions the resulting polylactides consist of cycles. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Salicylate PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488622 DO - https://doi.org/10.1002/pola.29473 SN - 0887-624X SN - 1099-0518 SP - 29473 PB - Wiley AN - OPUS4-48862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Inutan, E. A1 - Karki, S. A1 - Elia, E. A1 - Zhang, W. A1 - Weidner, Steffen A1 - Marshall, D. A1 - Hoang, K. A1 - Lee, C. A1 - Davis, E. A1 - Smith, V. A1 - Meher, A. A1 - Cornejo, M. A1 - Auner, G. A1 - McEwen, C. T1 - Fundamental studies of new ionization technologies and insights from IMS-MS N2 - Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this Special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original Environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened. KW - Inlet ionization KW - Vacuum ionization KW - Matrices KW - Fundamentals KW - Ion mobility PY - 2019 DO - https://doi.org/10.1007/s13361-019-02194-7 SN - 1044-0305 SN - 1879-1123 VL - 30 IS - 6 SP - 1133 EP - 1147 PB - Springer AN - OPUS4-48011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüdecke, Nils A1 - Weidner, Steffen A1 - Schlaad, Helmut T1 - Poly(2‐oxazoline) s Based on Phenolic Acids N2 - A series of phenolic-acid-based 2-oxazoline monomers with methoxysubstituted phenyl and cinnamyl side chains is synthesized and polymerized in a microwave reactor at 140 °C using methyl tosylate as the initiator. The obtained poly(2-oxazoline)s are characterized by NMR spectroscopy, MALDITOF mass spectrometry, and size-exclusion chromatography (SEC). Kinetic studies reveal that the microwave-assisted polymerization is fast and completed within less than ≈10 min for low monomer-to-initiator ratios of ≤25. Polymers with number-average molar masses of up to 6500 g mol−1 and low dispersity (1.2–1.3) are produced. The aryl methyl ethers are successfully cleaved with aluminum triiodide/N,N′ diisopropylcarbodiimide to give a poly(2-oxazoline) with pendent catechol groups. KW - 2-oxazoline KW - Catechol KW - Cationic ring opening polymerization KW - Microwave KW - Phenolic acid PY - 2019 DO - https://doi.org/10.1002/marc.201900404 SP - 1900404 PB - Wiley VCH-Verlag AN - OPUS4-49396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Y. A1 - Gollwitzer, Christian A1 - Weidner, Steffen T1 - Microstructure of polymer-imprinted metal–organic frameworks determined by absorption edge tomography N2 - Mechanochemically synthesized metal–organic Framework material HKUST-1 in combination with acrylonitrile butadiene styrene polymer was used to form a polymer metal–organic framework composite material by a simple extruder. This composite filament was used for 3D printing. Xray diffraction measurements were used to prove the homogeneous distribution of the metal–organic framework in the polymer on a centimeter scale, whereas X-ray Absorption Edge Tomography using a synchrotron radiation source was able to evaluate the 3D distribution of the metal–organic framework material both in the filament and the resultant printed sample with a resolution of a few lm. Our very first data indicate that, apart from a few clusters having significantly higher Cu concentration, HKUST-1 is distributed homogeneously down to the 100 lm length scale in both polymer bulk materials in the form of clusters with a size of a few lm. Absorption Edge Tomography in combination with data fusion also allows for the calculation of the metal–organic framework amount located on the external polymer surface. KW - MOF KW - Polymer KW - AET PY - 2019 DO - https://doi.org/10.3139/146.111817 SN - 1862-5282 SP - 1 EP - 10 PB - Carl Hanser Verlag AN - OPUS4-49483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -