TY - JOUR A1 - Lahcini, M. A1 - Weidner, Steffen A1 - Oumayama, J. A1 - Scheliga, F. A1 - Kricheldorf, H. R. T1 - Unsaturated Copolyesters of Lactide N2 - Four classes of unsaturated copolyesters of L-lactide were prepared either from isosorbide or bis(hydroxymethyl)tricyclodecane in combination with fumaric acid or from 1,4-butenediol or 1,4- butynediol with terephthalic acid. All syntheses were performed in such a way that lactide was oligomerized with a diol as the initiator and the resulting oligomers were polycondensed with a dicarboxylic acid dichloride either in a one-pot synthesis or in a two-step procedure. For most copolyesters the SEC measurements gave weight average molecular weights in the range of 30–60 kg mol⁻1 and dispersities in the range of 4.2–6.2. The MALDI-TOF mass spectra displayed a high content of cycles and indicated an irreversible kinetic course of all polycondensations. Glass-transition temperatures (Tg) above 90 °C were only found for two copolyesters of isosorbide. Addition of bromine to copolyesters of 1,4-butenediol yielded flame retarding biodegradable polymers. KW - Copolyester KW - MALDI-TOF MS KW - SEC KW - Lactide PY - 2016 U6 - https://doi.org/10.1039/c6ra16008e VL - 2016/6 IS - 96 SP - 93496 EP - 93504 PB - Royal Society of Chemistry AN - OPUS4-37913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen T1 - Abbau und Zersetzungsverhalten von Polymeren und Komposit‐ Materialien auf Polyurethanbasis N2 - Polyurethane zeichnen sich durch ihre große Flexibilität des Anwendungsbereiches aus. Im Rahmen dieses Vortrags wird ein neues Themenfeldprojekt der BAM vorgestellt und erste Ergebnisse präsentiert. T2 - Deutsche Gesellschaft für Materialprüfung, Fachausschuss Polymerwerkstoffe CY - Darmstadt, Germany DA - 10.11.2016 KW - Polyurethane KW - Abbauverhalten PY - 2016 AN - OPUS4-38332 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A. A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis N2 - A reversed phase high performance liquid chromatography coupled to an inductively coupled Plasma mass spectrometer (HPLC–ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main Focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the Ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution. KW - ICP-MS KW - Silver nanoparticles KW - Speciation KW - High performance liquid chromatography KW - Isotope dilution analysis PY - 2016 U6 - https://doi.org/10.1016/j.chroma.2016.09.028 SN - 0021-9673 VL - 1468 SP - 102 EP - 108 AN - OPUS4-37652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H.R. A1 - Scheliga, F. T1 - Cyclization and dispersity of poly(alkylene isophthalate)s N2 - Poly(alkylene isophthalate)s were prepared by different methods, either in solution or in bulk. The SEC measurements were evaluated in such a way that all oligomers were included. In solution (monomer conc. 0.1–0.7 mol/L) large fractions of rings were formed and high dispersities (up to 12) were obtained, which disagree with theoretical predictions. Polycondensations in bulk did neither generate cyclics by 'back-biting' nor by end-to-end cyclization, when the maximum temperature was limited to 210 °C. The dispersities of these perfectly linear polyesters were again higher than the theoretical values. Regardless of the synthetic method monomeric cycles were never observed. Furthermore, SEC measurements performed in tetrahydrofuran and in chloroform and SEC measurements performed in three different institutes were compared. Finally, SEC measurements of five samples were performed with universal calibration and a correction factor of 0.71 ± 0.02 was found for normal calibration with polystyrene. KW - Cyclization KW - Polycondensation KW - Polyesters KW - Size exclusion chromatography KW - Cyclics KW - Dispersity KW - SEC KW - Universal calibration KW - MALDI mass spectrometry PY - 2016 U6 - https://doi.org/10.1002/pola.27892 SN - 0360-6376 SN - 0887-624X VL - 54 IS - 1 SP - 197 EP - 208 PB - Wiley CY - Hoboken, NJ AN - OPUS4-33731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis N2 - A reversed phase high performance liquid chromatography coupled to an inductively coupled plasma mass spectrometer (HPLC-ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution. KW - ICP-MS KW - Silver nanoparticles KW - HPLC KW - Isotope dilution analysis KW - Field flow fractionation KW - Toxicology PY - 2016 U6 - https://doi.org/10.1016/j.chroma.2016.09.028 SN - 0021-9673 VL - 1468 SP - 102 EP - 108 PB - Elsevier B.V. AN - OPUS4-38642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zydziak, N. A1 - Konrad, W. A1 - Feist, F. A1 - Afonin, S. A1 - Weidner, Steffen A1 - Barner-Kowollik, C. T1 - Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation N2 - Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequencedefined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read.We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. KW - Photoligation KW - Copolymer sequence KW - MALDI-TOF MS/MS PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-391542 SN - 2041-1723 VL - 7 SP - Artikel Nr. 13672 AN - OPUS4-39154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinkönig, J. A1 - Bloesser, F. R. A1 - Huber, B. A1 - Welle, A. A1 - Trouillet, V. A1 - Weidner, Steffen A1 - Barner, L. A1 - Roesky, P. W. A1 - Yuan, J. A1 - Goldmann, A. S. A1 - Barner-Kowollik, C. T1 - Controlled radical polymerization and in-depth mass-spectrometric characterization of poly(ionic liquid)s and their photopatterning on surfaces N2 - The preparation and characterization of poly(ionic liquid)s (PILs) bearing a polystyrene backbone via reversible addition fragmentation chain transfer (RAFT) polymerization and their photolithographic patterning on silicon wafers is reported. The controlled radical polymerization of the styrenic ionic liquid (IL) monomers ([BVBIM]X, X = Cl− or Tf2N−) by RAFT polymerization is investigated in detail. We provide a general synthetic tool to access this class of PILs with controlled molecular weight and relatively narrow molecular weight distribution (2000 g mol−1 ≤ Mn ≤ 10 000 g mol−1 with dispersities between 1.4 and 1.3 for p([BVBIM]Cl); 2100 g mol−1 ≤ MP ≤ 14 000 g mol−1 for p([BVBIM]Tf2N)). More importantly, we provide an in-depth characterization of the PILs and demonstrate a detailed mass spectrometric analysis via matrix-assisted laser desorption ionization (MALDI) as well as – for the first time for PILs – electrospray ionization mass spectrometry (ESI-MS). Importantly, p([BVBIM]Cl) and p([DMVBIM]Tf2N) were photochemically patterned on silicon wafers. Therefore, a RAFT agent carrying a photoactive group based on ortho-quinodimethane chemistry – more precisely photoenol chemistry – was photochemically linked for subsequent controlled radical polymerization of [BVBIM]Cl and [DMVBIM]Tf2N. The successful spatially-resolved photografting is evidenced by surface-sensitive characterization methods such as X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The presented method allows for the functionalization of diverse surfaces with poly(ionic liquid)s. KW - reversible addition fragmentation chain transfer (RAFT) polymerization KW - polyionic liquids KW - mass spectrometry KW - surface modification PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355202 VL - 7 SP - 451 EP - 461 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-35520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Doriti, A. A1 - Brosnan, S. A1 - Weidner, Steffen A1 - Schlaad, H. T1 - Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base N2 - Polysarcosine (M-n = 3650-20 000 g mol(-1), D similar to 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator. KW - Polysarcosine KW - MALDI-TOF MS KW - Synthesis PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-359309 SN - 1759-9954 SN - 1759-9962 VL - 7 IS - 18 SP - 3067 EP - 3070 AN - OPUS4-35930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - The Role of Transesterification in SnOct 2 - Catalyzed Polymerizations of Lactides N2 - l-lactide or meso-lactide are polymerized either at 120 °C where the polymerization process of l-lactide is accompanied by crystallization, or at 180 °C where poly(l-lactide) remains in the molten state. Polymerizations at 120 °C initially yield even-numbered chains (with respect to lactic acid units) having relatively low dispersity, but the fraction of odd-numbered chains increases with time and the entire molecular weight distribution changes. Traces of cyclics are only formed after 7 d. Polymerizations at 180 °C yield equilibrium of even and odd-numbered chains from the beginning, but at low monomer/initiator ratios and short reaction times (<4 h) cyclics are again not formed. They appear at longer reaction times and entail higher dispersities. The results are discussed in terms of five different transesterification mechanisms. KW - Polylactides KW - MALDI KW - Transesterification KW - Sn catalysts PY - 2017 U6 - https://doi.org/10.1002/macp.201600331 SN - 1022-1352 VL - 218 IS - 3 SP - 1600331 PB - Wiley AN - OPUS4-39753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Cyclic poly(l-lactide) via ring-expansion polymerization by means of dibutyltin 4-tert-butylcatecholate N2 - Five new catalysts are prepared from dibutyltin oxide and catechol (HCa), 2,3-dihydroxynaphthalene (NaCa), 4-tert-butyl catechol (BuCa), 4-cyano catechol (CyCa), and 4-benzoyl catechol (BzCa), but only BuCa gives useful results. When benzyl alcohol is used as an initiator, linear chains having benzyl ester end groups are formed in a slow polymerization process. In contrast to cyclic or noncyclic dibutyltin bisalkoxides, neat BuCa yields cyclic poly(l-lactide)s via a fast ring-expansion polymerization. Under certain conditions, a high-melting crystalline phase (Tm = 191 °C) is obtained. At 160 °C and short reaction times even-numbered cycles are slightly prevailing, but, surprisingly, at 120 °C, odd-numbered cycles are predominantly formed. These results definitely prove that a ring-expansion mechanism is operating. KW - Lactides KW - MALDI TOF MS KW - Morphology KW - Ring-opening polymerization KW - Tin catalysts PY - 2017 U6 - https://doi.org/10.1002/macp.201700274 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 22 SP - 1700274, 1 EP - 1700274, 10 PB - Wiley VCH CY - Weinheim AN - OPUS4-43583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billing, Mark A1 - Gräfe, Christine A1 - Saal, Adrian A1 - Biehl, Philip A1 - Clement, Joachim A1 - Dutz, silvio A1 - Weidner, Steffen A1 - Schacher, Felix T1 - Zwitterionic Iron Oxide (γ-Fe2O3) Nanoparticles Based on P(2VP-grad-AA) Copolymers N2 - This study presents the synthesis and characterization of zwitterionic core–shell hybrid nanoparticles consisting of a core of iron oxide multicore nanoparticles (MCNPs, γ-Fe2O3) and a shell of sultonated poly(2-vinylpyridine-grad-acrylic acid) copolymers. The gradient copolymers are prepared by reversible addition fragmentation chain transfer polymerization of 2-vinylpyridine (2VP), followed by the addition of tert-butyl acrylate and subsequent hydrolysis. Grafting of P(2VP-grad-AA) onto MCNP results in P(2VP-grad-AA)@MCNP, followed by quaternization using 1,3-propanesultone-leading to P(2VPS-grad-AA)@MCNP with a zwitterionic shell. The resulting particles are characterized by transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis measurements, showing particle diameters of ≈70–90 nm and an overall content of the copolymer shell of ≈10%. Turbidity measurements indicate increased stability toward secondary aggregation after coating if compared to the pristine MCNP and additional cytotoxicity tests do not reveal any significant influence on cell viability. KW - Blockcopolymer KW - Controlled radical polymerization KW - Hybrid nanoparticles KW - Iron oxide nanoparticles KW - Sulfobetaines PY - 2017 U6 - https://doi.org/10.1002/marc.201600637 SN - 1022-1336 SN - 1521-3927 VL - 38 IS - 4 SP - 1600637-1 EP - 1600637-8 PB - Wiley-VCH AN - OPUS4-39339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(L-lactide)s via ring-expansion polymerizations catalysed by 2,2-dibutyl-2- stanna-1,3-dithiolane N2 - L-Lactides were polymerized in bulk at 120 or 160 °C with cyclic dibutyltin catalysts derived from 1,2-dimercaptoethane or 2-mercaptoethanol. Only linear chains having one benzyl ester and one OH-end group were obtained when benzyl alcohol was added. When L-lactides were polymerized with neat dibutyl-2-stanna-1,3-dithiolane, exclusively cyclic polylactides were formed even at 120 °C. The temperature, time and monomer/catalyst ratio (M/C) were varied. These results are best explained by a combination of ring-expansion polymerization and ring-extrusion of cyclic oligo- or polylactides with Elimination of the cyclic catalyst. Neither syntheses of linear polylactides nor of cyclic lactides involved racemization up to 20 h at 160 °C. KW - Ring-expansion polymerization KW - MALDI KW - Polylactides PY - 2017 U6 - https://doi.org/10.1039/C6PY02166B SN - 1759-9954 SN - 1759-9962 VL - 8 IS - 9 SP - 1589 EP - 1596 PB - Royal Society of Chemistry AN - OPUS4-39748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wachtendorf, Volker A1 - Geburtig, Anja A1 - Elert, Anna Maria A1 - Weidner, Steffen T1 - Einfluss von Feuchte und Nässe auf die Witterungs-induzierte Alterung am Beispiel eines Polyurethans N2 - In diesem Beitrag soll der relative Einfluss des Wassers als Feuchte und Nässe unter den Beanspruchungsfaktoren untersucht werden. Die Unterscheidung von Luftfeuchte und Nässe bezüglich ihrer Wirkung ist dabei notwendig, weil die stehende Nässe zusätzliche Extraktionswirkung besitzt und auch die verfügbare Sauerstoffmenge beeinflusst. Dazu wurde ein Polymer, das im Rahmen des BAM-internen Projektes PolyComp untersucht wird, künstlich bewittert. Hierzu wurde ein Fluoreszenzlampengerät mit UV-A 340 nm Leuchtstoffröhren verwendet, in dessen Probenraum durch zusätzliche Kammern die gleichzeitige Bewitterung unter drei unterschiedlichen Feuchte-Varianten realisiert wurde (bei konstanter Temperatur): - UV und trocken - UV und hohe Luftfeuchte - UV und stehende Nässe Das gleichzeitige Einwirken der einzelnen Einflussfaktoren kann dabei konkurrierende oder aufeinander folgende chemische Reaktionen und physikalische Prozesse und somit ein anderes Ergebnis bewirken, als wenn sie isoliert nacheinander auf eine Probe eingewirkt hätten. Über die erwähnten Varianten hinaus kann auch noch der spezifische Einfluss der UV-Strahlung mit untersucht werden, weil die Proben im Bereich ihrer Befestigung verdeckt sind. Die Methodik und erste Ergebnisse dieser Untersuchung werden präsentiert. T2 - 46. Jahrestagung der Gesellschaft für Umweltsimulation (GUS) 2017 CY - Stutensee-Blankenloch bei Karlsruhe, Germany DA - 22.03.2017 KW - Polyurethan KW - TPU KW - Bewitterung KW - UV KW - Feuchte KW - Nässe PY - 2017 SN - 978-3-9816286-9-2 VL - 46 SP - 251 EP - 261 PB - Gesellschaft für Umweltsimulation e. V CY - Pfinztal (Berghausen) AN - OPUS4-39906 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the Preparation of Pollen Grains for MALDI-TOF MS Classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - PCA KW - MALDI-TOF MS KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392885 UR - http://www.mdpi.com/1422-0067/18/3/543/ SN - 1422-0067 VL - 18 IS - 3 SP - 543 EP - 554 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-39288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Meier, Florian A1 - Weidner, Steffen ED - Weidner, Steffen T1 - Comparison of miniaturized and conventional asymmetrical flow field flow fractionation (AF4) channels for nanoparticle separation N2 - The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP) using Asymmetrical Flow Field-Flow Fractionation (AF4) was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD) and limit of quantification (LOQ) obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis. KW - Nanoparticles separation asymetrical flow field flow fractionation PY - 2017 U6 - https://doi.org/10.3390/separations4010008 SN - 2297-8739 VL - 4 IS - 1 SP - 8, 1 EP - 11 AN - OPUS4-47196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic Polylactides via Simultaneous Ring-Opening Polymerization and Polycondensation Catalyzed by Dibutyltin Mercaptides N2 - L-Lactide is polymerized in bulk at 160 8C either with dibutyltin bis(benzylmercaptide) (SnSBzl), dibutyltin bis(benzothiazole 2-mercaptide) (SnMBT), or with dibutyltin bis(pentafluorothiophenolate) (SnSPF) as catalysts. SnSBzl yields linear polylactides having benzylthio-ester end groups in addition to cyclic polylactides, whereas SnMBT and SnSPF mainly or exclusively yield cyclic polylactides. This finding, together with model reactions, indicates that the SnS catalysts promote a combined ring-opening polymerization and polycondensation process including end-to-end cyclization. SnMBT caused slight racemization (3%–5%), when used at 160 8C. With SnSPF optically pure cyclic poly(L-lactide)s with high-molecular weights can be prepared at 160 8C. KW - Cyclopolymerization KW - Catalysts KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization PY - 2017 U6 - https://doi.org/10.1002/pola.28762 VL - 55 IS - 22 SP - 3767 EP - 3775 PB - Wiley Periodicals AN - OPUS4-42600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. ED - Shaplov, A. T1 - Cyclization and dispersity of polyesters N2 - Two classes of polyesters were prepared by irreversible polycondensations. The dependence of the dispersities on the experimental parameters such as synthetic method, chemical structure, molecular weight and initial monomer concentration was determined. At first it was demonstrated that it is essential for a correct calculation of Mn and Mw to include all oligomers down to the dimers in the evaluation of SEC curves. Furthermore, it was demonstrated for poly(e-caprolactone)s and polylactides that reversible polycondensations and ring-opening polymerizations with equilibration yield identical products. Finally, the dependence of the dispersity on various experimental Parameters was determined for equilibrated poly(e-caprolactone)s and polylactides. KW - Irreversible polycondensation KW - Polycaprolactone KW - Polylactide KW - Dispersity KW - MALDI-TOF MS PY - 2017 U6 - https://doi.org/10.1002/masy.201600169 SN - 1022-1360 SN - 1521-3900 VL - 375 IS - 1 SP - Article 1600169, 1 EP - 6 PB - Wiley-VCH AN - OPUS4-42407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, Hans R. T1 - Transesterification in the solid state of cyclic and linear poly(l-lactide)s N2 - Poly(l-lactide)s are synthesized and annealed at 120 °C and changes of the molecular weight distribution (MWD) are monitored by matrix-assited laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. For example, benzyl alcohol+SnOct2 causes equilibration of odd- and even-numbered chains and the final goal of the transesterification is the most probable distribution. The underlying intermolecular transesterification is even observed at 100 and 80 °C in the solid state. However, cyclic tin mercaptide catalysts transform the initial most probable distribution into a MWD with maxima, which display a conspicuous fine structure due to a preferential crystallization of certain ring sizes. The optimum ring sizes for the crystallization are provided by ring-ring equilibration. The gradual formation of a special morphology shifts the melting temperature to values up to 187 °C. Annealing of commercial poly(l-lactide) with a cyclic tin catalyst also yields a distribution of mass peaks with a maximum showing the characteristic fine structure. KW - Equilibration KW - Mass spectrometry KW - Polylactides KW - Ring-opening polymerization KW - Transesterification PY - 2017 U6 - https://doi.org/10.1002/macp.201700114 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 14 SP - 1700114-1 EP - 1700114-10 PB - Wiley-VCH AN - OPUS4-41732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the preparation of pollen grains for MALDI-TOF MS classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - MALDI KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment KW - Principal component analysis PY - 2017 U6 - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 SN - 1661-6596 VL - 18 IS - 3 SP - 543-1 EP - 543-11 PB - MDPI AN - OPUS4-41733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wessig, P. A1 - Schulze, T. A1 - Pfennig, A. A1 - Weidner, Steffen A1 - Prentzel, S. A1 - Schlaad, H. T1 - Thiol–ene polymerization of oligospiroketal rods N2 - The nucleophilic thiol–ene (thia-Michael) reaction between molecular rods bearing terminal thiols and bis-maleimides was investigated. The molecular rods have oligospiroketal (OSK) and oligospirothioketal (OSTK) backbones. Contrary to the expectations, cyclic oligomers were always obtained instead of linear rigid-rod polymers. Replacing the OS(T)K rods with a flexible chain yielded polymeric products, suggesting that the OS(T)K structure is responsible for the formation of cyclic products. The reason for the preferred formation of cyclic products is due to the presence of folded conformations, which have already been described for articulated rods. KW - Oligospiroketals KW - Polymerization KW - MALDI-TOF MS PY - 2017 U6 - https://doi.org/10.1039/C7PY01569K SN - 1759-9954 SN - 1759-9962 VL - 8 IS - 44 SP - 6879 EP - 6885 PB - Royal Society of Chemistry AN - OPUS4-42685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeegers, G. P. A1 - Steinhoff, R. F. A1 - Weidner, Steffen A1 - Zenobi, R. T1 - Evidence for laser-induced redox reactions in matrix-assisted laserdesorption/ionization between cationizing agents and target plate material: a study with polystyrene and trifluoroacetate salts N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is often applied to assess the dispersity and the end groups of synthetic polymers through the addition of cationizing agents. Here weaddress how these cation adducts are formed using polystyrene (PS) as a model polymer. We analyzed PSby MALDI-MS with a 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix and a range of trifluoroacetate (TFA) salts as cationizing agents on a range of different targetplate materials (copper, 1.4301 stainless steel, aluminum, Inconel 625, Ti90/Al6/V4 and chromium-, gold-and silver-plated stainless steel). It was found that on a stainless steel substrate the metal cations Al+,Li+, Na+, Cu+and Ag+formed polystyrene adducts, whereas K+, Cs+, Ba2+, Cr3+, Pd2+, In3+, or their lower oxidation states, did not. For the copper and silver substrates, PS and DCTB adduct formation with cations liberated from these target plate materials was observed upon addition of a cationizing agent, which indicates the occurrence of redox reactions between the added TFA salts and the target plate material. Judging from their standard electrode potentials, these redox reactions would not normally occur, i.e.,they require an additional energy input, strongly suggesting that the observed redox reactions are laser-induced. Furthermore, copper granules were found to successfully sequester PS from a tetrahydrofuran(THF) solution, consistent with the view complex formation with the copper target plate can take place prior to the MALDI-MS measurement. KW - Polymer MALDI KW - Cationization KW - Polystyrene KW - Laser-induced redox reactions KW - Target plate material PY - 2017 U6 - https://doi.org/10.1016/j.ijms.2016.10.007 SN - 1387-3806 SN - 1873-2798 VL - 416 SP - 80 EP - 89 PB - Elsevier B.V. AN - OPUS4-41146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-expansion polymerization of meso-lactide catalyzed by dibutyltin derivatives N2 - Meso-Lactide was polymerized in bulk at 60, 80, and 100 °C by means of three different types of catalysts: dibutyltinsulfides (2,2-dibutyl-2-stanna-1,3-dithiolane and 2,20-dibutyl-2-stanna-1,3-dithiane), dibutyltin derivatives of substituted cate-chols (BuCa, CyCa, and BzCa), and dibutyltin derivatives of2,2 dihydroxybiphenyl (SnBi) and 2,2-dihydroxy-1,10-binaphthyl(SnNa. Only the latter two catalysts were active at 60 °C. The architecture of the resulting polylactides depends very much on the structure of the catalyst and on the temperature. At the lowest temperature (60 °C), SnBi and SnNa mainly yielded even-numbered linear chains, but SnNa also yielded even-numbered cycles at 100 °C and short reaction times. In contrast,BuCa, CyCa, and BzCa mainly yielded odd-numbered cycles, although the same catalysts yielded even-numbered linear chains when benzylalcohol was added. KW - MALDI-TOF MS KW - Cyclisation KW - Catalysts KW - Polyester KW - Polymerization PY - 2018 U6 - https://doi.org/10.1002/pola.28948 SN - 1099-0518 SN - 0022-3832 VL - 56 IS - 7 SP - 749 EP - 759 PB - Wiley Periodicals Inc. AN - OPUS4-44278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. A1 - Scheliga, F. T1 - Cyclic polylactides via ring-expansion polymerization N2 - We will report on a new kind of ring-expansion polymerization (REP) of cyclic esters based of three classes of catalysts. In contrast to REP described previously these new polymerizations are characterized by a self-extrusion of the catalysts resulting in cyclic homopolyesters as the only reaction product. These REP of L-lactide were performed in bulk at temperatures between 100 and 180°C without racemization. A simplified scheme of a REP catalyzed by BuCa or SnBi is presented below. With meso-lactide temperatures down to 60°C were realized. Depending on catalyst, time and temperature with equal quantities of even and odd-numbered cycles a strong predominance of either even or odd-numbered cycles was found. T2 - 255th ACS National Meeting CY - New Orleans, LA, USA DA - 18.03.2018 KW - MALDI-TOF MS KW - Poly(lactide) KW - Polymerisation KW - Catalysts PY - 2018 AN - OPUS4-44833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. A1 - Scheliga, F. T1 - MALDI-TOF-MS for the determination of polymerization mechanisms of biodegradable polymers N2 - Eine neue Art einer Ring-Expansion Polymerization (REP) von zyklischen Polylaktiden mittels neuer Katalysatoren wird präsentiert. MALDI-TOF Massenspektrometrie und andere analytische Techniken wurden zur Aufklärung des Mechanismus eingesetzt. Dabei zeigte sich, dass im Gegensatz zu anderen REP, ausschließlich zyklische Polymere gebildet wurden. Diese stellen neue Kandidatenmaterialien für zukünftige neue CRM dar. T2 - 22. MALDI-Kolloquium CY - Berlin, Germany DA - 15.05.2018 KW - MALDI-TOF MS KW - Polylaktid KW - Zyklen PY - 2018 AN - OPUS4-44835 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen T1 - High molar mass cyclic poly(L-lactide) via ring-expansion polymerizationwith cyclic dibutyltin bisphenoxides N2 - Two new catalysts (SnNa and SnBi) were prepared from dibutyltin oxide and 2,2′-dihydroxybiphenyl or2,2′dihydroxy(1,1′-binaphtyl). These catalysts enabled rapid polymerizations of L-lactide at 160 or 180 °C in bulk, whereby almost exclusively cyclic polylactides were formed. These polymerizations were free of racemization and yielded pol(L-lactide)s having weight average molecular weights (Mw's) up to 140 000 g mol−1. The Mw's varied little with the Lac/Cat ratio as expected for a ring expansion polymerization (REP). Polymerizations performed in bulk at 140, 120 and 102 °C yielded cyclic polylactides with lower molecular weights. At 102 °C a strong predominance of even-numbered cycles was found with SnNa as catalyst. SnNa can also catalyze alcohol-initiated ROPs yielding linear poly(L-lactide) free of cyclics. KW - MALDI-TOF MS KW - Polylactide KW - Ring-opening Polymerization KW - Cyclization KW - Catalysts PY - 2018 U6 - https://doi.org/10.1016/j.eurpolymj.2018.05.036 SN - 0014-3057 SN - 1873-1945 VL - 105 SP - 158 EP - 166 PB - Elsevier Ltd. AN - OPUS4-45439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Lee, C. A1 - Weidner, Steffen A1 - El-Baba, T. A1 - Lutomski, C. A1 - Inutan, E. A1 - Foley, C. A1 - Ni, C.-K. A1 - McEwen, C. T1 - Unprecedented Ionization Processes in Mass SpectrometryProvide Missing Link between ESI and MALDI N2 - In the field of mass spectrometry,producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from bio-medical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser Ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around athird of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorp-tion/ionization. KW - MALDI KW - Electrospray KW - Mass spectrometry KW - Ionization PY - 2018 U6 - https://doi.org/10.1002/cphc.201701246 SN - 1439-4235 SN - 1439-7641 VL - 19 IS - 5 SP - 581 EP - 589 PB - Wiley-VCH AN - OPUS4-44404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Sauerland, V. A1 - Barahona, C. A1 - Weidner, Steffen T1 - Multivariate analysis of MALDI imaging mass spectrometry data of mixtures of single pollen grains N2 - Mixtures of pollen grains of three different species (Corylus avellana, Alnus cordata, and Pinus sylvestris) were investigated by matrixassisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF imaging MS). The amount of pollen grains was reduced stepwise from > 10 to single pollen grains. For sample pretreatment, we modified a previously applied approach, where any additional extraction steps were omitted. Our results show that characteristic pollen MALDI mass spectra can be obtained from a single pollen grain, which is the prerequisite for a reliable pollen classification in practical applications. MALDI imaging of laterally resolved pollen grains provides additional information by reducing the complexity of the MS spectra of mixtures, where frequently peak discrimination is observed. Combined with multivariate statistical analyses, such as principal component analysis (PCA), our approach offers the chance for a fast and reliable identification of individual pollen grains by mass spectrometry. KW - MALDI Imaging MS KW - Pollen grains KW - Multivariate Statistics KW - Hierarchical cluster analysis KW - Principal component analysis PY - 2018 U6 - https://doi.org/10.1007/s13361-018-2036-5 SN - 1044-0305 SN - 1879-1123 VL - 29 IS - 11 SP - 2237 EP - 2247 PB - Springer AN - OPUS4-45607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Weidner, Steffen T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes N2 - The effects of weathering exposure on unfilled and filled thermoplastic polyurethanes (TPU) materials are described as performed under different humidity conditions. For this purpose, a weathering device was used with UV-A 340 nm lamps at a constant temperature of 40 °C. The effects of environmental (UV and humidity condition) degradation on the frictional properties of TPU materials are presented along with surface analyses to characterize the chemistry of the degradative process. Photooxidative degradation of unfilled polymer leads to deterioration of physical and mechanical properties, which affects its tribological behavior significantly. Due to crosslinking, the stiffness of the material increases, reducing drastically the friction coefficient of unfilled TPUs. The frictional behavior of glass fiber reinforced TPU is less affected by radiation. KW - Photooxidation KW - UV radiation KW - Friction KW - TPU KW - Humidity PY - 2018 U6 - https://doi.org/10.1016/j.polymertesting.2018.08.006 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 467 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Spirocyclic bisphenoxides of Ge, Zr, and Sn as catalysts for ring-expansion polymerizations of L- and meso-lactide N2 - Spirocyclic phenoxides of germanium, zirconium, and tin were prepared from 2,20-dihydroxybiphenyl and 2,20-dihydroxy-1,10-binaphthyl. Ring-expansion polymerizations of L-lactide are mainly studied at 160 or 180 °C. The reactivity of the catalysts increases in the order: Zr < Ge < Sn. Regardless of catalyst, the weight-average molecular weights (Mw) never exceed 50,000 g mol−1. The resulting poly(L-lactide)s are optically pure and have a cyclic architecture. Decreasing temperature and time favor Formation of even-numbered cycles, and at 102 ° cyclics, almost free of odd-numbered rings are obtained. Analogous polymerizations of meso-lactide give similar results >120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too. KW - Cyclization KW - Polylactides KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Spirocyclic PY - 2018 U6 - https://doi.org/10.1002/pola.29259 SN - 0887-624X SN - 1099-0518 VL - 56 IS - 24 SP - 2730 EP - 2738 PB - Wiley Periodicals AN - OPUS4-46498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465294 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - About formation of cycles in Sn(II) octanoate-catalyzed polymerizations of lactides N2 - At first, formation of cycles in commercial poly(Llactide)s is discussed and compared with benzyl alcoholinitiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4-cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end-biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of L-lactide were performed with various diphenols as initiators/co-catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even-numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring-expansion polymerization (REP). The influence of temperature, time, co-catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(L-lactide)s weight average molecular weights (Mw’s) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of Initiator and catalyst and temperature on the formation of cyclic poly(Llactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization KW - Transesterification PY - 2018 U6 - https://doi.org/10.1002/pola.29077 SN - 0887-624X VL - 56 IS - 17 SP - 1915 EP - 1925 PB - Wiley Periodicals Inc. AN - OPUS4-46052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Cyclic poly(L-lactide)s via simultaneous ROP and polycondensation (ROPPOC) catalyzed by dibutyltin phenoxides N2 - Starting from dibutyltin oxide, four catalysts were synthesized, namely the dibutyltin bisphenoxides of Phenol (SnPh), 4-chlorophenol (SnCP), 4-hydroxybenzonitrile (SnCN) and pentafluorophenol (SnOPF). With the first three catalysts polymerizations of L-lactide at 160 °C in bulk yielded large fraction of linear chains having phenylester end groups at short reaction times. At longer times the fraction of cycles considerably increased at the expense of the linear chains, when SnCN was used as catalyst. With SnOPF only cyclic polylactides were obtained at low Lac/Cat ratios (< 400) with weight average molecular weights (Mw) up to 90 000 Da, whereas for high Lac/Cat ratios mixtures of cyclic and linear chains were found. Polymerizations in solution enabled variation of the molecular weight. Polymerizations of meso-lactide at temperatures down to 60 °C mainly yielded even-numbered linear chains supporting the postulated ROPPOC mechanism. KW - Cyclization KW - MALDI-TOF MS KW - Polycondensation KW - Ring-opening Polymerization KW - Polylactide PY - 2018 U6 - https://doi.org/10.1016/j.eurpolymj.2018.10.005 SN - 0014-3057 IS - 109 SP - 360 EP - 366 PB - Elsevier AN - OPUS4-46263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. T1 - Transesterification in alcohol-initiated ROPs of l- and meso-lactide catalyzed by Sn(II) and Sn(IV) compounds at low temperatures N2 - The purpose of this study is to shed more light on the transesterification processes in alcohol-initiated and tin(II) 2-ethylhexanoate (SnOct2)-catalyzed polymerizations of lactides at low or moderate temperatures. Ethanol-initiated polymerizations are conducted in concentrated solutions at 80 °C and a strong dependence of even/odd equilibration on the alcohol/Sn ratio. Around or above 120 °C cyclization of poly(l-lactide) via “backbiting” occurs as a third mechanism. However, poly(m-lactide) shows a higher cyclization tendency and yields cyclics even at 100 °C. Combinations of ethanol and certain cyclic dibutyltin(IV) catalysts also yield cyclic oligomers of l-lactide at 80 °C. Reaction conditions allowing for a total suppression of all transesterification reactions are not found, but even-numbered poly(m-lactide)s with a purity >95% are obtained at 70 or 60 °C. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Polylactide KW - Transesterification PY - 2018 U6 - https://doi.org/10.1002/macp.201800445 SN - 1022-1352 SN - 1521-3935 VL - 219 IS - 24 SP - 1800445, 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-46705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen T1 - SnOct 2-Catalyzed Syntheses of Cyclic Poly (l-lactide) s with Catechol as Low-Toxic Co-catalyst N2 - Polymerizations of l-lactide in bulk at 160 or 180 °C were performed with 1/1 mixtures of catechol (CA) or 4-tert-butylcatechol (BuCA) and tin(II)-2-ethylhexanoate (SnOct2) as catalysts and a variation of the Lac/Cat ratio. Weight average molar masses (Mw) up to 170,000 g mol−1 were obtained with CA and up to 120,000 g mol−1 with BuCA. The cyclic structure of the resulting poly(l-lactide)s was proven by MALDI-TOF mass spectrometry and by comparison of their hydrodynamic volumes with those of commercial linear poly(l-lactide)s. The predominance of even-numbered cycles increased with lower temperatures and shorter polymerization times. This fnding indicates that the cyclic architecture is the results of a ring-expansion polymerization mechanism. Addition of silylated BuCA as co-catalyst was less favorable than addition of free BuCA. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Catechol KW - Toxicity PY - 2019 U6 - https://doi.org/10.1007/s10924-019-01545-5 SP - 10924 PB - Springer AN - OPUS4-49210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen T1 - About the influence of salicylic acid on tin(II)octanoate-catalyzed ring opening polymerizationof L-lactide N2 - L-Lactide was polymerized in bulk with tin(II)2-ethylhexanoate SnOct2) as catalyst and salicylic acid as cocatalyst. The Lac/Cat ratio, Cocat/Cat ratio, temperature and time were varied. Increasing Cocat/Cat ratios reduced both,polymerization rate and molecular weight. However,under optimized conditions high molar mass (Mw up to 178,000), colorless, cyclic polylactides were formed in a short time. A few polymerizations performed at 160 and 180°C with the combination of SnOct2 and silylated salicylic acid gave similar results. Neat tin II) salicylate was prepared from SnOct2 and used for REPs of L-lactide in bulk, but the results were not better than those obtained from combinations of SnOct2 and salicylic acid. Furthermore, dibutyltin salicylate was synthesized and used as catalyst for polymerizations of L-lactide in bulk at temperatures varying from 102 to 160°C. Cyclic polylactides with Mw’s up to 40,000 were the main reaction products. At 100–102°C a predominance of odd-numbered cycles was found proving a REP mechanism. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Ring-opening polymerization PY - 2019 U6 - https://doi.org/10.1016/j.eurpolymj.2019.07.003 VL - 119 SP - 37 EP - 44 PB - Elsevier Ltd. AN - OPUS4-49211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic poly(l-lactide) catalyzed by Bismuth salicylates-A combination of two drugs N2 - l‐lactide was polymerized in bulk at 160 or 180°C with mixtures of bismuth subsalicylate (BiSub) and salicylic (SA) as catalysts. The SA/Bi ratio and the monomer/Bi ratio were varied. The highest molecular weights (weight average, Mw) were achieved at a SA/Bi ratio of 1/1 (Mw up to 92 000 g mol−1). l‐Lactide was also polymerized with combinations of BiSub and silylated SA, and Mw values up to 120 000 g mol−1 were achieved at 180°C. MALDI‐TOF mass spectrometry and Mark‐Houwink‐Sakurada measurements proved that under optimized reaction conditions the resulting polylactides consist of cycles. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Salicylate PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-488622 SN - 0887-624X SN - 1099-0518 SP - 29473 PB - Wiley AN - OPUS4-48862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Panne, Ulrich A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Degradation of MDI-based polyether and polyester-polyurethanes in various environments - Effects on molecular mass and crosslinking N2 - Size-exclusion chromatography (SEC) was used to monitor changes of the molecular masses of thermoplastic polyether – and polyester urethane (TPU) exposed to thermal, hydrolytic, and photo-oxidative (UV) Degradation conditions for several days. The thermal treatment was performed at elevated temperatures (100–200 °C) under oxidative (air) as well as non-oxidative (nitrogen) conditions to evaluate the specific influence of oxygen on the degradation. At higher temperatures (≥175 °C) a fast decrease of the molecular masses of both PU accompanied by a high degree of crosslinking was found. At lower temperatures (≤150 °C) the polymers remained widely unaffected by thermal degradation within the investigated degradation interval of up to two weeks. Surprisingly, the influence of oxygen (air) was found to be less distinct. In contrast to that, UV treatment at 25 °C at less than 10% rel. humidity (RH) resulted in a fast crosslinking, whereas the molecular masses of both PU decreased slower than for thermal treatments. The depth of penetration of the UV radiation was estimated using 3D printed PU samples with different thicknesses. Hydrolysis based degradation effects were less significant. Only slight molecular mass changes were detected at temperatures ≤80 °C within a time span of 14 days, while no crosslinking could be measured. Considering the degradation results at the investigated exposure parameters, it could be shown that esterbased PU in general exhibits a significant higher stability compared to ether-based materials. KW - Polyurethane KW - Thermal degradation KW - UV degradation KW - Molecular masses KW - Crosslinking PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819302363 U6 - https://doi.org/10.1016/j.polymertesting.2019.04.028 SN - 0142-9418 VL - 77 SP - 105881, 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-48619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 U6 - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpin, S. A1 - Inutan, E. A1 - Karki, S. A1 - Elia, E. A1 - Zhang, W. A1 - Weidner, Steffen A1 - Marshall, D. A1 - Hoang, K. A1 - Lee, C. A1 - Davis, E. A1 - Smith, V. A1 - Meher, A. A1 - Cornejo, M. A1 - Auner, G. A1 - McEwen, C. T1 - Fundamental studies of new ionization technologies and insights from IMS-MS N2 - Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this Special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original Environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened. KW - Inlet ionization KW - Vacuum ionization KW - Matrices KW - Fundamentals KW - Ion mobility PY - 2019 U6 - https://doi.org/10.1007/s13361-019-02194-7 SN - 1044-0305 SN - 1879-1123 VL - 30 IS - 6 SP - 1133 EP - 1147 PB - Springer AN - OPUS4-48011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüdecke, Nils A1 - Weidner, Steffen A1 - Schlaad, Helmut T1 - Poly(2‐oxazoline) s Based on Phenolic Acids N2 - A series of phenolic-acid-based 2-oxazoline monomers with methoxysubstituted phenyl and cinnamyl side chains is synthesized and polymerized in a microwave reactor at 140 °C using methyl tosylate as the initiator. The obtained poly(2-oxazoline)s are characterized by NMR spectroscopy, MALDITOF mass spectrometry, and size-exclusion chromatography (SEC). Kinetic studies reveal that the microwave-assisted polymerization is fast and completed within less than ≈10 min for low monomer-to-initiator ratios of ≤25. Polymers with number-average molar masses of up to 6500 g mol−1 and low dispersity (1.2–1.3) are produced. The aryl methyl ethers are successfully cleaved with aluminum triiodide/N,N′ diisopropylcarbodiimide to give a poly(2-oxazoline) with pendent catechol groups. KW - 2-oxazoline KW - Catechol KW - Cationic ring opening polymerization KW - Microwave KW - Phenolic acid PY - 2019 U6 - https://doi.org/10.1002/marc.201900404 SP - 1900404 PB - Wiley VCH-Verlag AN - OPUS4-49396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Y. A1 - Gollwitzer, Christian A1 - Weidner, Steffen T1 - Microstructure of polymer-imprinted metal–organic frameworks determined by absorption edge tomography N2 - Mechanochemically synthesized metal–organic Framework material HKUST-1 in combination with acrylonitrile butadiene styrene polymer was used to form a polymer metal–organic framework composite material by a simple extruder. This composite filament was used for 3D printing. Xray diffraction measurements were used to prove the homogeneous distribution of the metal–organic framework in the polymer on a centimeter scale, whereas X-ray Absorption Edge Tomography using a synchrotron radiation source was able to evaluate the 3D distribution of the metal–organic framework material both in the filament and the resultant printed sample with a resolution of a few lm. Our very first data indicate that, apart from a few clusters having significantly higher Cu concentration, HKUST-1 is distributed homogeneously down to the 100 lm length scale in both polymer bulk materials in the form of clusters with a size of a few lm. Absorption Edge Tomography in combination with data fusion also allows for the calculation of the metal–organic framework amount located on the external polymer surface. KW - MOF KW - Polymer KW - AET PY - 2019 U6 - https://doi.org/10.3139/146.111817 SN - 1862-5282 SP - 1 EP - 10 PB - Carl Hanser Verlag AN - OPUS4-49483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, A. A1 - Weidner, Steffen A1 - Kricheldorf, H. T1 - Stereocomplexation of cyclic polylactides with each other and with linear poly(L-lactide)s N2 - Two kinds of cyclic poly(D- and L-lactide)s were synthesized, namely CI labeled samples mainly consisting of even-numbered cycles with low dispersity and CII, CIII or CIV-labeled ones consisting of equal amounts of even and odd-numbered cycles with high dispersity and igher molecular weights (Mw up to 300 000). Furthermore, linear poly L-lactide)s were prepared by initiation with ethanol and in both series the molecular weight was varied. The formation of stereocomplexes from cyclic poly(D-lactide)s and all kinds of poly L-lactide)s was performed in dichloromethane/toluene mixtures. The stereocomplexes crystallized from the reaction mixture were characterized in the virgin state and after annealing at 205 °C. Stereocomplexes free of stereohomopolymers with crystallinities up to 80% were obtained from all experiments in yields ranging from 60 to 80%. Despite the high annealing temperature (maintained for 1 h), little transesterification was observed and the crystallinity slightly increased. KW - Polylactide KW - MALDI-TOF MS KW - Stereocomplex KW - Cyclic PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-496693 VL - 10 SP - 6191 EP - 6199 PB - Royal Society for Chemistry AN - OPUS4-49669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Separation of polystyrene nanoparticles with different coatings using two-dimensional off-line coupling of asymmetrical flow field flow fractionation and capillary electrophoresis N2 - The successful off-line coupling of asymmetrical flow field flow fractionation (AF4) and capillary electrophoresis (CE) for separation of nanoparticles (NPs) with different surface coatings was shown. We could successfully demonstrate that, in a certain NP size range, hyphenation of both techniques significantly improved the separation of differently coated NPs. Three mixtures of polystyrene nanoparticles (PS-NPs) with comparable core sizes but different coatings (no coating/carboxyl-coated) were studied. Separation in either method resulted in non-baseline resolved or non-separated peaks. In contrast, two-dimensional off-line coupling of AF4 and CE resulted in clearly separated regions in their 2 D plots in case of 20 and 50 nm particle mixtures, whereas the 100 nm NP mixture could not be separated at all. Various factors affecting the separation like hydrodynamic diameter or SDS concentration were discussed. KW - Capillary electrophoresis (CE) KW - Nanoparticles with same nominal diameter KW - Surface coating KW - Two-dimensional off-line coupling KW - Asymmetrical flow field flow fractionation (AF4) PY - 2019 U6 - https://doi.org/10.1016/j.chroma.2019.01.056 VL - 1593 SP - 119 EP - 126 PB - Elsevier AN - OPUS4-47363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(lactide)s via the ROPPOC method catalyzed by alkyl- or aryltin chlorides N2 - A comparison of tributyltin chloride, dibutyltin dichloride,and butyltin trichloride as catalysts of ring-opening polymerizations(ROPs) of l-lactides at 160°C in bulk reveals increasing reactivity in the above order, but only the least reactive catalysts, Bu3SnCl, yield a uniform reaction product, namely cyclic poly(L-lactide)s with weight average molecular weights (Mw ́s) in the range of 40,000–80,000. A comparison of dimethyltin , dibutyltin , and diphenyltin dichlorides resulted in the following order of reactivity: Me2SnCl2