TY - JOUR A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen A1 - Thünemann, Andreas T1 - Characterization of poly/N-vinyl-2-pyrrolidone)s with broad size distributions N2 - We report on the characterization of the solution structure of poly(N-vinyl-2-pyrrolidone)s (PVP) by small-angle X-ray scattering (SAXS) and by online coupling of asymmetrical flow field-flow fractionation (A4F), SAXS and dynamic light scattering (DLS). The commercial products PVP K30 and PVP K90 with nominal molar masses of 40 × 103 and 360 × 103 g mol-1, respectively, were investigated separately and as binary mixture. Detailed information for all polymer fractions is available on the polymer contour lengths and the diffusion coefficients. Key areas of applications for the A4F-SAXS-DLS coupling are seen in comparison to static light scattering for polymers with radii of gyration smaller than 10 nm, for which only SAXS produces precise analytical results on the size of the polymers in solution. KW - Small-angle X-ray scattering KW - SAXS KW - Field-flow fractionation PY - 2010 U6 - https://doi.org/10.1016/j.polymer.2010.02.039 SN - 0032-3861 SN - 1873-2291 VL - 51 IS - 8 SP - 1723 EP - 1727 PB - Springer CY - Berlin AN - OPUS4-21222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen A1 - Thünemann, Andreas T1 - Poly(acrylic acid): A combined analysis with field-flow fractionation and SAXS N2 - Polyelectrolytes such as PAA and its salts are widely used, but are notoriously difficult to characterize due to their polyelectrolyte properties and broad molecular mass distributions. In this paper, we report on a new PAA analysis by combining asymmetrical flow field-flow fractionation and an advanced SAXS technique using an acoustic levitator to minimize background scattering. The proof-of-principle is demonstrated with a mixture of three standard PAAs with different molecular masses. Detailed information on the PAA fractions is available on radii of gyration, polymer contour lengths, and coil conformation. Our method is expected to be applicable for a wide range of water-soluble synthetic and natural polymers and ideal for molecular masses of 5 × 103–2 × 105 g · mol-1. KW - Fractionation of polymers KW - Molar mass distribution KW - Polyelectrolytes KW - Small-angle X-ray scattering KW - Water-soluble polymers PY - 2010 U6 - https://doi.org/10.1002/macp.201000163 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 19 SP - 2148 EP - 2153 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -