TY - JOUR A1 - Weidner, Steffen A1 - Schultze, R.-D. A1 - Enthaler, B. T1 - Matrix-assisted laser desorption/ionization imaging mass spectrometry of pollen grains and their mixtures N2 - RATIONALE The fast and univocal identification of different species in mixtures of pollen grains is still a challenge. Apart from microscopic evaluation and Raman spectroscopy, no other techniques are available. METHODS Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was applied to the analysis of extracts of single pollen grains and pollen mixtures. Pollen grains were fixed, treated and covered with matrix directly on the MALDI target. RESULTS Clearly resolved MALDI ion intensity images could be obtained enabling the identification of single pollen grains in a mixture. CONCLUSIONS Our results demonstrate the potential and the suitability of MALDI imaging mass spectrometry as an additional method for the identification of pollen mixtures. KW - MALDI KW - Imaging KW - Pollen KW - Blends PY - 2013 U6 - https://doi.org/10.1002/rcm.6523 SN - 0951-4198 SN - 1097-0231 VL - 27 IS - 8 SP - 896 EP - 903 PB - Wiley CY - Chichester AN - OPUS4-27986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Matrix-assisted laser desorption/ionization behavior of neat linear and cyclic poly(L-lactide)s and their blends N2 - Numerous new tin catalysts that enable the synthesis of cyclic polylactides with broad variation in their molecular mass were recently developed. The abundance of cyclics in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra is, however, frequently reported to greatly exceed that of linears. Thus, the MALDI ionization behavior of various end-capped linear poly(L-lactide)s and one cyclic poly(L-lactide) was investigated and compared. Neat compounds and various blends of cyclic and linear species were prepared and studied under identical conditions with regard to sample preparation and instrumental condition, except for the laser power. For this purpose, two different MALDI-TOF mass spectrometers were applied. Our results reveal that cyclics indeed show a slightly better ionization in MALDI, although their ionization as a neat compound seems to be less effective than that of linear polylactides. The ionization of most linear polylactides investigated does not depend on the end group structure. However, linear polylactides containing 12-bromododecyl end groups reveal an unexpected saturation effect that is not caused by fragmentation of the polymer or the end group, or by electronic saturation of the detector digitizer. Furthermore, polylactides with a 2-bromoethyl end group did not show such a saturation effect. An overestimation of cyclic species in MALDI-TOF mass spectra of poly(L-lactide)s must be considered, but the commonly assumed peak suppression of linear polymers in mixtures of both structures can be excluded. KW - Polylactide KW - MALDI-TOF MS KW - Blends KW - Ionization PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504216 VL - 34 SP - e8673 PB - Wiley Online Libary AN - OPUS4-50421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -