TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Imaging mass spectrometry for examining localization of polymeric composition in matrix-assisted laser desorption/ionization samples N2 - The localization of polymeric composition in samples prepared for matrix-assisted laser desorption/ionization (MALDI) analysis has been investigated by imaging mass spectrometry. Various matrices and solvents were used for sample spot preparation of a polybutyleneglycol (PBG 1000). It was shown that in visibly homogeneous spots, prepared using the dried droplet method, separation between matrix and polymer takes place. Moreover, using -cyano-4-hydroxycinnamic acid (CCA) as matrix and methanol as solvent molecular mass separation of the polymer homologues in the spots was detectable. In contrast to manually spotted samples, dry spray deposition results in homogeneous layers showing no separation effects. KW - Imaging KW - MALDI TOF Massenspektrometrie KW - Polymere PY - 2009 DO - https://doi.org/10.1002/rcm.3919 SN - 0951-4198 SN - 1097-0231 VL - 23 IS - 5 SP - 653 EP - 660 PB - Wiley CY - Chichester AN - OPUS4-19622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garaleh, M. A1 - Lahcini, M. A1 - Kricheldorf, H.R. A1 - Weidner, Steffen T1 - Syntheses of aliphatic polyesters catalyzed by lanthanide triflates N2 - Polycondensations of 1,6-hexane diol and sebacic acid were conducted in bulk with addition of a lanthanide triflate as acidic catalyst. With exception of promethium triflate all lanthanide triflates were studied. A particularly low molecular weight was obtained with neodym triflate and the best results with samarium triflate. With Sm(OTf)3 weight average (Mw) values up to 65 kDa (uncorrected SEC data) were achieved after optimization of the reaction conditions. Comparison of these results with those obtained from bismuth, magnesium, and zinc triflates, on the one hand, and comparison with the acidities of all catalysts, on the other, indicates that the esterification mechanism involves complexation of monomer by metal ions. Preparation of multiblock copoly(ether ester)s failed due to insufficient incorporation of poly(tetrahydrofuran) diols. KW - Biodegradable polyesters KW - Lanthanide ions KW - Macrocycles KW - MALDI-TOF KW - Polycondensation PY - 2009 DO - https://doi.org/10.1002/pola.23136 SN - 0360-6376 SN - 0887-624X VL - 47 IS - 1 SP - 170 EP - 177 PB - Wiley CY - Hoboken, NJ AN - OPUS4-19626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Yashiro, T. A1 - Weidner, Steffen T1 - Isomerization-free polycondensations of maleic anhydride with alpha,omega-alkanediols KW - Polymerisation KW - Polykondensation KW - MALDI Massenspektrometrie PY - 2009 DO - https://doi.org/10.1021/ma9009356 SN - 0024-9297 SN - 1520-5835 VL - 42 IS - 17 SP - 6433 EP - 6439 PB - American Chemical Society CY - Washington, DC AN - OPUS4-20930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thünemann, Andreas A1 - Rolf, Simone A1 - Knappe, Patrick A1 - Weidner, Steffen T1 - In Situ Analysis of a Bimodal Size Distribution of Superparamagnetic Nanoparticles N2 - The dispersed iron oxide nanoparticles of ferrofluids in aqueous solution are difficult to characterize due to their protective polymer coatings. We report on the bimodal size distribution of superparamagnetic iron oxide nanoparticles found in the MRI contrast agent Resovist, which is a representative example of commercial nanoparticle-based pharmaceutical formulations. The radii of the majority of the nanoparticles (>99%) range from 4 to 13 nm (less than 1% of the particles display radii up to 21 nm). The maxima of the size distributions are at 5.0 and 9.9 nm. The analysis was performed with in situ characterization of Resovist via online coupling of asymmetrical flow field-flow fractionation (A4F) with small-angle X-ray scattering (SAXS) using a standard copper X-ray tube as a radiation source. The outlet of the A4F was directly coupled to a flow capillary on the SAXS instrument. SAXS curves of nanoparticle fractions were recorded at 1-min time intervals. We recommend using the A4F-SAXS coupling as a routine method for analysis of dispersed nanoparticles with sizes in the range of 1-100 nm. It allows a fast and quantitative comparison of different batches without the need for sample preparation. PY - 2009 DO - https://doi.org/10.1021/ac802009q SN - 0003-2700 SN - 1520-6882 VL - 81 IS - 1 SP - 296 EP - 301 PB - American Chemical Society CY - Washington, DC AN - OPUS4-18658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thünemann, Andreas A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen T1 - Online coupling of field-flow fractionation with SAXS and DLS for polymer analysis N2 - We report on a hyphenated polymer analysis method consisting of asymmetrical flow field-flow fractionation (A4F) coupled online with small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). A mixture of six poly(styrene sulfonate)s with molar masses in the range of 6.5 × 103 to 1.0 × 106 g mol-1 was used as a model system for polyelectrolytes in aqueous solutions with a broad molar mass distribution. A complete polymer separation and analysis was performed in 60 min. Detailed information for all polymer fractions are available on i) the radii of gyration, which were determined from the SAXS data interpretation in terms of the Debye model (Gaussian chains), and ii) the diffusion coefficients (from DLS). We recommend using the A4F-SAXS-DLS coupling as a possible new reference method for the detailed analysis of complex polymer mixtures. Advantages of the use of SAXS are seen in comparison to static light scattering for polymers with radii of gyration smaller then 15 nm, for which only SAXS produces precise analytical results on the size of the polymers in solution. PY - 2009 DO - https://doi.org/10.1039/b9ay00107g SN - 1759-9660 SN - 1759-9679 VL - 1 SP - 177 EP - 182 PB - RSC Publ. CY - Cambridge AN - OPUS4-20567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Knop, K. A1 - Thünemann, Andreas T1 - Structure and end-group analysis of complex hexanediol-neopentylglycol-adipic acid copolyesters by matrix-assisted laser desorption/ionization collision-induced dissociation tandem mass spectrometry N2 - Sequences and end groups of complex copolyesters were determined by fragmentation analysis by means of matrix-assisted laser desorption/ionization collision-induced dissociation tandem mass spectrometry (MALDI CID MS/MS). The complexity of the crude copolyester mixture was reduced by a chromatographic separation followed by a MALDI time-of-flight (TOF) investigation of fractions. Due to overlapping compositional and end-group information a clear assignment of end groups was very difficult. However, the fragmentation of suitable precursor ions resulted in typical fragment ion patterns and, therefore, enabled a fast and unambiguous determination of the end groups and composition of this important class of polymers. KW - Fragmentierung KW - MALDI Massenspektrometrie KW - Polymere KW - MS/MS PY - 2009 DO - https://doi.org/10.1002/rcm.4191 SN - 0951-4198 SN - 1097-0231 VL - 23 IS - 17 SP - 2768 EP - 2774 PB - Wiley CY - Chichester AN - OPUS4-20929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appelhans, Dietmar A1 - Oertel, U. A1 - Mazzeo, R. A1 - Komber, H. A1 - Hoffmann, J. A1 - Weidner, Steffen A1 - Brutschy, B. A1 - Voit, B. A1 - Ottaviani, M.F. T1 - Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation N2 - The development of dendritic metal ion carrier systems for use in a biological environment is a challenging task as the carrier system must possess multiple features (e.g. a protective shell for metal decomplexation, targeting functions, metal-intradendrimer complexes, etc.) to substitute for the function of metal proteins in processes such as copper metabolism. Thus, Cu(II) complexation by a series of poly(propyleneimine) glycodendrimers ranging up to the fifth generation that have either a dense maltose or maltotriose shell was investigated by UV/Vis spectroscopy and electron paramagnetic resonance (EPR). As a necessary step towards potential biological application, we elucidated the complexation capacity, location of the Cu(II)-dendrimer complexes and the Cu(II) coordination sphere in the dendritic environment. A generation-dependent Cu(II) complexation was found. Furthermore, analysis of the EPR spectra revealed that internal and external Cu(II) coordination and the symmetry (axial and rhombic) of the generated complexes depend on the oligosaccharide shell, dendrimer generation and the relative concentrations of Cu(II) and the dendrimers. Both axial and rhombic symmetries are generation dependent, but also distort with increasing generation number. External coordination of Cu(II) is supported by sugar groups and water molecules. Finally, a third-generation dendrimer with a maltose shell was used to explore the general complexation behaviour of the dendritic poly(propyleneimine) scaffold towards different metal ions [Cu(II), Ag(I), VO(IV), Ni(II), Eu(III) and UO2(VI)]. KW - Glycodendrimers KW - Metal ion complexation KW - Metal ion-intradendrimer complexes KW - Electron paramagnetic resonance study PY - 2010 DO - https://doi.org/10.1098/rspa.2009.0107 SN - 1364-5021 SN - 0962-8444 SN - 0080-4630 SN - 0950-1207 SN - 1471-2946 VL - 466 SP - 1489 EP - 1513 CY - London, UK AN - OPUS4-21622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Trimpin, s. T1 - Mass Spectrometry of Synthetic Polymers KW - Polymere KW - Massenspektrometrie KW - MALDI PY - 2010 DO - https://doi.org/10.1021/ac101080n SN - 0003-2700 SN - 1520-6882 VL - 82 IS - 12 SP - 4811 EP - 4829 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garaleh, M. A1 - Kricheldorf, H.R. A1 - Weidner, Steffen A1 - Yashiro, T. T1 - Hafnium chloride catalyzed polycondensation of Alpha, Omega-alkanediol with dicarboxylic acids or succinic anhydride KW - Polyester KW - Polycondensation KW - Hafnium KW - Cyclization PY - 2010 DO - https://doi.org/10.1080/10601320903539199 SN - 1060-1325 SN - 1520-5738 VL - 47 IS - 4 SP - 303 EP - 308 PB - Taylor & Francis CY - Philadelphia, PA AN - OPUS4-22953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gruendling, T. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Barner-Kowollik, C. T1 - Mass spectrometry in polymer chemistry: a state-of-the-art up-date N2 - Two decades after the introduction of matrix assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), soft ionization mass spectrometry represents a powerful toolset for the structural investigation of synthetic polymers. The present review highlights the current state-of-the-art, covering the latest developments of novel techniques, enabling instrumentation as well as the important applications of soft ionization MS from the beginning of 2008. Special attention is paid to the role that soft ionization MS has played in the mechanistic investigation of radical polymerization processes since 2005. KW - Polymerization mechanisms KW - Mass spectrometry KW - LC-MS coupling PY - 2010 DO - https://doi.org/10.1039/b9py00347a SN - 1759-9954 SN - 1759-9962 VL - 1 IS - 5 SP - 599 EP - 617 AN - OPUS4-21906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen A1 - Thünemann, Andreas T1 - Poly(acrylic acid): A combined analysis with field-flow fractionation and SAXS N2 - Polyelectrolytes such as PAA and its salts are widely used, but are notoriously difficult to characterize due to their polyelectrolyte properties and broad molecular mass distributions. In this paper, we report on a new PAA analysis by combining asymmetrical flow field-flow fractionation and an advanced SAXS technique using an acoustic levitator to minimize background scattering. The proof-of-principle is demonstrated with a mixture of three standard PAAs with different molecular masses. Detailed information on the PAA fractions is available on radii of gyration, polymer contour lengths, and coil conformation. Our method is expected to be applicable for a wide range of water-soluble synthetic and natural polymers and ideal for molecular masses of 5 × 103–2 × 105 g · mol-1. KW - Fractionation of polymers KW - Molar mass distribution KW - Polyelectrolytes KW - Small-angle X-ray scattering KW - Water-soluble polymers PY - 2010 DO - https://doi.org/10.1002/macp.201000163 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 19 SP - 2148 EP - 2153 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen A1 - Thünemann, Andreas T1 - Characterization of poly/N-vinyl-2-pyrrolidone)s with broad size distributions N2 - We report on the characterization of the solution structure of poly(N-vinyl-2-pyrrolidone)s (PVP) by small-angle X-ray scattering (SAXS) and by online coupling of asymmetrical flow field-flow fractionation (A4F), SAXS and dynamic light scattering (DLS). The commercial products PVP K30 and PVP K90 with nominal molar masses of 40 × 103 and 360 × 103 g mol-1, respectively, were investigated separately and as binary mixture. Detailed information for all polymer fractions is available on the polymer contour lengths and the diffusion coefficients. Key areas of applications for the A4F-SAXS-DLS coupling are seen in comparison to static light scattering for polymers with radii of gyration smaller than 10 nm, for which only SAXS produces precise analytical results on the size of the polymers in solution. KW - Small-angle X-ray scattering KW - SAXS KW - Field-flow fractionation PY - 2010 DO - https://doi.org/10.1016/j.polymer.2010.02.039 SN - 0032-3861 SN - 1873-2291 VL - 51 IS - 8 SP - 1723 EP - 1727 PB - Springer CY - Berlin AN - OPUS4-21222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fandrich, Nick A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Pfeifer, Dietmar A1 - Staal, B. A1 - Thünemann, Andreas A1 - Laschewsky, A. T1 - Characterization of new amphiphilic block copolymers of N-vinyl pyrrolidone and vinyl acetate, 1 - analysis of copolymer composition, end groups, molar masses and molar mass distributions N2 - New amphiphilic block copolymers consisting of N-vinyl pyrrolidone and vinyl acetate were synthesized via controlled radical polymerization using a reversible addition/fragmentation chain transfer (RAFT)/macromolecular design via the interchange of xanthates (MADIX) system. The synthesis was carried out in 1,4-dioxane as process solvent. In order to get conclusions on the mechanism of the polymerization the molecular structure of formed copolymers was analysed by means of different analytical techniques. 13C NMR spectroscopy was used for the determination of the monomer ratios. End groups were analysed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This technique was also used to determine possible fragmentations of the RAFT end groups. By means of a combination of size exclusion chromatography, 13C NMR and static light scattering molar mass distributions and absolute molar masses could be analysed. The results clearly show a non-ideal RAFT mechanism. KW - Amphiphiles KW - Block copolymers KW - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) KW - N-vinyl pyrrolidone KW - Reversible addition/fragmentation chain transfer (RAFT) PY - 2010 DO - https://doi.org/10.1002/macp.200900466 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 8 SP - 869 EP - 878 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-21905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fandrich, Nick A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Staal, B. A1 - Thünemann, Andreas A1 - Laschewsky, A. T1 - Characterization of new amphiphilic block copolymers of N-vinylpyrrolidone and vinyl acetate, 2 - chromatographic separation and analysis by MALDI-TOF and FT-IR coupling N2 - PVP-block-PVAc block copolymers were synthesized by controlled radical polymerization applying a RAFT/MADIX system and were investigated by HPLC and by coupling of chromatography to FT-IR spectroscopy and MALDI-TOF MS. Chromatographic methods (LACCC and gradient techniques) were developed that allowed a separation of block copolymers according to their repeating units. The results of the spectroscopic and spectrometric analysis clearly showed transfer between radicals and process solvent. With the use of hyphenated techniques differences between main and side products were detected. In agreement with previously published results, obtained by NMR, SEC, static light scattering and MALDI-TOF MS, our data proved a non-ideal RAFT polymerization. KW - Amphiphiles KW - Block copolymers KW - Liquid chromatography KW - MALDI KW - Reversible addition fragmentation chain transfer (RAFT) KW - Liquid adsorption chromatography at critical conditions KW - Gradient chromatography KW - MALDI-TOF mass spectrometry KW - Hyphenated techniques KW - Mechanism of polymerization PY - 2010 DO - https://doi.org/10.1002/macp.201000044 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 15 SP - 1678 EP - 1688 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - LC-MALDI-TOF imaging MS: a new approach in combining chromatography and mass spectrometry of copolymers N2 - A new approach that utilizes MALDI-TOF imaging mass spectrometry as a new detector for polymer chromatography is presented. For the first time, the individual retention behavior of single structural units of polyethylene oxide (PEO)/polypropylene oxide (PPO) copolymers and changes of the copolymer composition could be monitored. Composition specific calibration curves could be easily obtained by displaying the copolymer ion intensity data. This approach provides completely new insights in the chromatographic principle of copolymer separation and could be used to easily modify and adapt conditions for separation. In combination with electrospray deposition, homogeneous sample/matrix traces of surprisingly high spatial resolution could be obtained. KW - MALDI KW - Massenspektrometrie KW - Imaging KW - Chromatographie KW - Polymere PY - 2011 DO - https://doi.org/10.1021/ac202380n SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 23 SP - 9153 EP - 9158 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lahcini, M. A1 - Qayouh, H. A1 - Yashiro, T. A1 - Weidner, Steffen A1 - Kricheldorf, H.R. T1 - Bismuth-triflate-catalyzed polymerizations of epsilon-caprolactone N2 - εCL was polymerized using the triflates of lanthanum, samarium, magnesium, aluminum, scandium, and bismuth as catalysts. Bismuth triflate proved to be extraordinarily reactive, and catalyzed polymerizations of εCL even at 20 °C. Adding DTBMP reduced the polymerization rate only slightly. Furthermore, no evidence of a cationic mechanism was found by end‐group analyses. Polymerization at 20 °C either in bulk or in solution only yielded polyesters of low or medium molecular weights. Yet addition of alcohols allowed for a proper control of molecular weight and end‐groups. Additionally, low catalyst concentrations and low temperature resulted in narrow molecular weight distributions and polylactones almost free of cyclic compounds. KW - Bismuth KW - Epsilon-caprolactone KW - Ring-opening polymerization KW - Telechelic polyesters PY - 2011 DO - https://doi.org/10.1002/macp.201000517 SN - 1022-1352 SN - 1521-3935 VL - 212 IS - 6 SP - 583 EP - 591 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-23514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Knappe, Patrick A1 - Panne, Ulrich T1 - MALDI-TOF imaging mass spectrometry of artifacts in 'dried droplet' polymer samples N2 - Matrix-assisted laser desorption/ionization-timeof-flight (MALDI-TOF) imaging of polystyrenes with various molecular masses was applied to study spatial molecular mass distribution of polymers in sample spots prepared by the 'dried droplet' method. When different solvents and target surfaces were examined, a segregation of single homologous polymers was observed depending upon the evaporation rate of the solvent. For the observed Patterns left by the evaporating droplet, a hypothesis is offered taking into account different hydrodynamic interactions and diffusion. The results illustrate that spot preparation using the conventionally 'dried droplet' method is prone to artifacts and should be avoided for reliable and reproducible MALDI mass spectrometry experiments with regards to the Determination of molecular masses and mass distributions. KW - MALDI KW - Mass spectrometry imaging KW - Polymer KW - Droplet PY - 2011 DO - https://doi.org/10.1007/s00216-011-4773-1 SN - 1618-2642 SN - 1618-2650 VL - 401 IS - 1 SP - 127 EP - 134 PB - Springer CY - Berlin AN - OPUS4-24538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leiterer, Jork A1 - Panne, Ulrich A1 - Thünemann, Andreas A1 - Weidner, Steffen T1 - Container-less polymerization in acoustically levitated droplets: an analytical study by GPC and MALDI-TOF mass spectrometry N2 - Molecular masses and end groups of polystyrene (PS) formed in a novel container-less polymerization strategy, based on levitated droplets in an acoustic trap, were determined by Gel Permeation Chromatography (GPC) and Matrix-assisted Laser Desorption/Ionization Time of Flight Mass spectrometry (MALDI-TOF MS). KW - Ultraschallfalle KW - MALDI Massenspektrometrie KW - Polymerisation PY - 2011 DO - https://doi.org/10.1039/c0ay00390e SN - 1759-9660 SN - 1759-9679 VL - 3 IS - 1 SP - 70 EP - 73 PB - RSC Publ. CY - Cambridge AN - OPUS4-23655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhao, J. A1 - Schlaad, H. A1 - Weidner, Steffen A1 - Antonietti, M. T1 - Synthesis of terpene-poly(ethylene oxide)s by t-BuP4-promoted anionic ring-opening polymerization N2 - Terpene alcohols (menthol, retinol, cholesterol, and betulin) together with the phosphazene base t-BuP4 were used as initiating systems for anionic ring-opening polymerization of ethylene oxide. The polymerizations were conducted in a controlled manner with the initial molar ratio of t-BuP4 to hydroxyl groups of 0.01–0.2, yielding a series of biohybrid polymers comprising terpene entities and poly(ethylene oxide) (PEO) chains with low polydispersities and tunable compositions (57–87 wt% of PEO). Samples were characterized by NMR and UV/visible spectroscopy, MALDI-TOF mass spectrometry, and size exclusion chromatography; thermal properties were studied by differential scanning calorimetry. The concept of this study opens a new toolbox of terpene-based biohybrid polymers with variable properties and functions. KW - ROMP KW - MALDI KW - Amphiphilic polymers KW - Polyethylene oxide PY - 2012 DO - https://doi.org/10.1039/c1py00388g SN - 1759-9954 SN - 1759-9962 VL - 3 IS - 7 SP - 1763 EP - 1768 AN - OPUS4-26026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El Malah, T. A1 - Ciesielski, A. A1 - Piot, L. A1 - Troyanov, S.I. A1 - Mueller, U. A1 - Weidner, Steffen A1 - Samorì, P. A1 - Hecht, S. T1 - Conformationally pre-organized and pH-responsive flat dendrons: synthesis and self-assembly at the liquid-solid interface N2 - Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid–solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D. KW - Dendrons KW - MALDI Massenspektrometrie PY - 2012 DO - https://doi.org/10.1039/c1nr11434d SN - 2040-3364 SN - 2040-3372 VL - 4 SP - 467 EP - 472 PB - RSC Publ. CY - Cambridge AN - OPUS4-25378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -