TY - CONF A1 - Weidner, Steffen A1 - Kühn, Gerhard A1 - Just, Ulrich T1 - Characterization of Technical Waxes using chromatographic techniques and MALDI-MS T2 - 10th International Conference on Macromolecules CY - Bratislava, Slovakia DA - 1995-09-18 PY - 1995 AN - OPUS4-11117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg Florian A1 - Unger, Wolfgang A1 - Lippitz, Andreas A1 - Koprinarov, Ivaylo A1 - Kühn, Gerhard A1 - Weidner, Steffen A1 - Vogel, Lydia T1 - Chemical reactions at polymer surfaces interacting with a gas plasma or with metal atoms - their relevance to adhesion N2 - The chemical and morphological stabilities of polymer segments in the near-surface layer were investigated by spectroscopic methods such as X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. Model studies were undertaken with Langmuir–Blodgett films, self-assembled monolayers and oligomer films. For thin polymer layers (30 to 500 nm), the changes in molecular-weight distributions of some polymers were investigated systematically by size exclusion chromatography, matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry and thermal-field flow fractionation for oxygen- and helium-plasma exposures. The polymer surfaces were found to be relatively stable at exposure to an oxygen low-pressure plasma up to ca. 2 s. This is important information to get maximum adhesion to metals in composites. In correlation to their redox potentials, potassium, aluminium and chromium react with oxygen functional groups at the polymer/metal interface. In a dedicated study, chromium was found to attack aromatic rings and form different reaction products. PY - 1999 DO - https://doi.org/10.1016/S0257-8972(99)00229-7 SN - 0257-8972 VL - 116-119 SP - 772 EP - 782 PB - Elsevier Science CY - Lausanne AN - OPUS4-6981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kühn, Gerhard A1 - Ghode, Archana A1 - Weidner, Steffen A1 - Retzko, Iris A1 - Unger, Wolfgang A1 - Friedrich, Jörg Florian ED - Mittal, K. L. T1 - Chemically well-defined surface functionalization of polyethylene and polypropylene by pulsed plasma modification followed by grafting of molecules T2 - 2nd International Symposium on Polymer Surface Modification: Relevance to Adhesion CY - Newark, NJ, USA DA - 1999-05-24 KW - Plasma modification KW - Chemical conversion of functional groups KW - Spacers KW - Polypropylene KW - Polyethylene PY - 2000 SN - 90-6764-327-0 VL - 2 SP - 45 EP - 64 PB - VSP CY - Utrecht AN - OPUS4-6975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wettmarshausen, Sascha A1 - Friedrich, Jörg Florian A1 - Meyer-Plath, Asmus A1 - Kalinka, Gerhard A1 - Hidde, Gundula A1 - Weidner, Steffen T1 - Coating of carbon fibers with adhesion-promoting thin poly(acrylic acid) and poly(hydroxyethylmethacrylate) layers using electrospray ionization N2 - Thin coatings of poly(acrylic acid) (PAA) and poly(hydroxyethylmethacrylate) (PHEMA) were deposited onto carbon fibers by means of the electrospray ionization (ESI) technique in ambient air. These high-molecular weight polymer layers were used as adhesion promoters in carbon fiber–epoxy resin composites. Within the ESI process, the carbon fibers were completely enwrapped with polymer in the upper 10 plies of a carbon fiber roving. As identified with scanning electron microscopy also shadowed fibers in a bundle as well as backsides of fiber rovings were pinhole-free coated with polymers (‘electrophoretic effect'). Under the conditions used, the layers have a granular structure. Residual solvent was absent in the deposit. PAA and PHEMA films did not show any changes in composition and structure in comparison with the original polymers as analyzed by X-ray photo-electron spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Single-fiber pullout tests of coated fibers embedded in epoxy resin showed significantly increased interfacial shear strength. It is assumed that chemical bonds between carbon fiber poly(acrylic acid) and epoxy resin contribute significantly to the improved interactions. KW - Adhesion promotion KW - Thin polymer layers KW - Electrospray ionization (ESI) KW - Carbon fiber–epoxy resin laminates KW - Layer topography PY - 2015 DO - https://doi.org/10.1080/01694243.2015.1040980 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 15 SP - 1628 EP - 1650 PB - VNU Science Press CY - Utrecht AN - OPUS4-34564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zydziak, N. A1 - Konrad, W. A1 - Feist, F. A1 - Afonin, S. A1 - Weidner, Steffen A1 - Barner-Kowollik, C. T1 - Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation N2 - Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequencedefined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read.We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. KW - Photoligation KW - Copolymer sequence KW - MALDI-TOF MS/MS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391542 DO - https://doi.org/10.1038/ncomms13672 SN - 2041-1723 VL - 7 SP - Artikel Nr. 13672 AN - OPUS4-39154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, S. A1 - Zimmermann, B. A1 - Tafintseva, V. A1 - Seifert, S. A1 - Bagcioglu, M. A1 - Ohlson, M. A1 - Weidner, Steffen A1 - Fjellheim, S. A1 - Kohler, A. A1 - Kneipp, Janina T1 - Combining Chemical Information From Grass Pollen in Multimodal Characterization N2 - The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters. KW - Pollen KW - MALDI-TOF MS KW - FTIR KW - Raman KW - Multivariate analyses PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504822 DO - https://doi.org/10.3389/fpls.2019.01788 VL - 10 SP - 1788 AN - OPUS4-50482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Zengchao A1 - Meier, Florian A1 - Weidner, Steffen ED - Weidner, Steffen T1 - Comparison of miniaturized and conventional asymmetrical flow field flow fractionation (AF4) channels for nanoparticle separation N2 - The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP) using Asymmetrical Flow Field-Flow Fractionation (AF4) was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD) and limit of quantification (LOQ) obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis. KW - Nanoparticles separation asymetrical flow field flow fractionation PY - 2017 DO - https://doi.org/10.3390/separations4010008 SN - 2297-8739 VL - 4 IS - 1 SP - 8, 1 EP - 11 AN - OPUS4-47196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yameen, B. A1 - Zydziak, N. A1 - Weidner, Steffen A1 - Bruns, M. A1 - Barner-Kowollik, C. T1 - Conducting polymer/SWCNTs modular hybrid materials via Diels-Alder ligation N2 - The development of a facile covalent strategy for the fabrication of organic conducting polymers (OCPs)/carbon nanotubes (CNTs) based molecular hybrid materials remains a challenge and is expected to address the detrimental intrinsic bundling issue of CNTs. In view of the pristine CNTs' ability to undergo Diels–Alder reactions with dienes, we report the synthesis of a novel poly(3-hexylthiophene) (P3HT) based organic conducting polymer (OCP) with terminal cyclopentadienyl (Cp) groups. The synthetic strategy employed is based on a combination of in situ end group functionalization via Grignard metathesis (GRIM) polymerization and a subsequent end group switching via reaction with nickelocene. Characterization data from Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI–TOF MS) fully support the successful synthesis of monofunctional Cp-capped P3HT, which was found to be highly reactive toward dienophile end-capped polystyrene (PS). The Cp-capped P3HT was subsequently ligated to the surface of pristine single walled CNTs (SWCNTs). The resulting P3HT/SWCNTs molecular hybrid material was characterized using thermogravimetric analysis (TGA), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), and high resolution transmission electron microscopy (HRTEM). The data from TGA, EA, and XPS were used to quantitatively deduce the grafting density. P3HT/SWCNTs prepared with Cp capped P3HT was found to contain 2 times more P3HT than the reference sample, featuring a grafting density of 0.0510 chains·nm–2 and a periodicity of 1 P3HT chain per 748 carbon atoms of the SWCNTs. HRTEM revealed individual SWCNTs wrapped with P3HT whereas in the reference sample P3HT was adsorbed on the bundles of the SWCNTs. The results presented here provide a new avenue for designing novel materials based on CNTs and OCPs. KW - Mass spectrometry KW - Polymers PY - 2013 DO - https://doi.org/10.1021/ma4004055 SN - 0024-9297 SN - 1520-5835 VL - 46 IS - 7 SP - 2606 EP - 2615 PB - American Chemical Society CY - Washington, DC AN - OPUS4-28575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabicki, N. A1 - Nguyen, K. T. G. A1 - Weidner, Steffen A1 - Dumele, O. T1 - Confined Spaces in [n]Cyclo-2,7-pyrenylenes N2 - A set of strained aromatic macrocycles based on [n]cyclo2,7-(4,5,9,10-tetrahydro)pyrenylenes is presented with size dependent photophysical properties. The K-region of pyrene was functionalized with ethylene glycol groups to decorate the outer rim and thereby confine the space inside the macrocycle. This confined space is especially pronounced for n = 5, which leads to an internal binding of up to 8.0×104 M–1 between the ether-decorated [5]cyclo-2,7-pyrenylene and shape complementary crown ether–cation complexes. Both, the ether-decorated [n]cyclo-pyrenylenes as well as one of their host–guest complexes have been structurally characterized by single crystal X-ray analysis. In combination with computational methods the structural and thermodynamic reasons for the exceptionally strong binding have been elucidated. The presented rim confinement strategy makes cycloparaphenylenes an attractive supramolecular host family with a favorable, size-independent read-out signature and binding capabilities extending beyond fullerene guests. KW - Cycloparaphenylenes KW - Host–guest systems KW - Macrocycles KW - Molecular recognition KW - Supramolecular chemistry PY - 2021 DO - https://doi.org/10.1002/anie.202102809 SN - 1433-7851 VL - 60 IS - 27 SP - 1 EP - 7 PB - Wiley VCH AN - OPUS4-52517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El Malah, T. A1 - Ciesielski, A. A1 - Piot, L. A1 - Troyanov, S.I. A1 - Mueller, U. A1 - Weidner, Steffen A1 - Samorì, P. A1 - Hecht, S. T1 - Conformationally pre-organized and pH-responsive flat dendrons: synthesis and self-assembly at the liquid-solid interface N2 - Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid–solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D. KW - Dendrons KW - MALDI Massenspektrometrie PY - 2012 DO - https://doi.org/10.1039/c1nr11434d SN - 2040-3364 SN - 2040-3372 VL - 4 SP - 467 EP - 472 PB - RSC Publ. CY - Cambridge AN - OPUS4-25378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leiterer, Jork A1 - Panne, Ulrich A1 - Thünemann, Andreas A1 - Weidner, Steffen T1 - Container-less polymerization in acoustically levitated droplets: an analytical study by GPC and MALDI-TOF mass spectrometry N2 - Molecular masses and end groups of polystyrene (PS) formed in a novel container-less polymerization strategy, based on levitated droplets in an acoustic trap, were determined by Gel Permeation Chromatography (GPC) and Matrix-assisted Laser Desorption/Ionization Time of Flight Mass spectrometry (MALDI-TOF MS). KW - Ultraschallfalle KW - MALDI Massenspektrometrie KW - Polymerisation PY - 2011 DO - https://doi.org/10.1039/c0ay00390e SN - 1759-9660 SN - 1759-9679 VL - 3 IS - 1 SP - 70 EP - 73 PB - RSC Publ. CY - Cambridge AN - OPUS4-23655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinkönig, J. A1 - Bloesser, F. R. A1 - Huber, B. A1 - Welle, A. A1 - Trouillet, V. A1 - Weidner, Steffen A1 - Barner, L. A1 - Roesky, P. W. A1 - Yuan, J. A1 - Goldmann, A. S. A1 - Barner-Kowollik, C. T1 - Controlled radical polymerization and in-depth mass-spectrometric characterization of poly(ionic liquid)s and their photopatterning on surfaces N2 - The preparation and characterization of poly(ionic liquid)s (PILs) bearing a polystyrene backbone via reversible addition fragmentation chain transfer (RAFT) polymerization and their photolithographic patterning on silicon wafers is reported. The controlled radical polymerization of the styrenic ionic liquid (IL) monomers ([BVBIM]X, X = Cl− or Tf2N−) by RAFT polymerization is investigated in detail. We provide a general synthetic tool to access this class of PILs with controlled molecular weight and relatively narrow molecular weight distribution (2000 g mol−1 ≤ Mn ≤ 10 000 g mol−1 with dispersities between 1.4 and 1.3 for p([BVBIM]Cl); 2100 g mol−1 ≤ MP ≤ 14 000 g mol−1 for p([BVBIM]Tf2N)). More importantly, we provide an in-depth characterization of the PILs and demonstrate a detailed mass spectrometric analysis via matrix-assisted laser desorption ionization (MALDI) as well as – for the first time for PILs – electrospray ionization mass spectrometry (ESI-MS). Importantly, p([BVBIM]Cl) and p([DMVBIM]Tf2N) were photochemically patterned on silicon wafers. Therefore, a RAFT agent carrying a photoactive group based on ortho-quinodimethane chemistry – more precisely photoenol chemistry – was photochemically linked for subsequent controlled radical polymerization of [BVBIM]Cl and [DMVBIM]Tf2N. The successful spatially-resolved photografting is evidenced by surface-sensitive characterization methods such as X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The presented method allows for the functionalization of diverse surfaces with poly(ionic liquid)s. KW - reversible addition fragmentation chain transfer (RAFT) polymerization KW - polyionic liquids KW - mass spectrometry KW - surface modification PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355202 DO - https://doi.org/10.1039/C5PY01320H VL - 7 SP - 451 EP - 461 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-35520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chatti, S. A1 - Weidner, Steffen A1 - Fildier, A. A1 - Kricheldorf, H.R. T1 - Copolyesters of isosorbide, succinic acid, and isophthalic acid: biodegradable, high Tg engineering plastics N2 - Isosorbide, succinyl chloride and isophthaloyl chloride are polycondensed under various reaction conditions. The heating in bulk with or without catalysts as well in an aromatic solvent without catalyst, and polycondensation with the addition of pyridine only yield low molar mass copolyesters. However, heating in chlorobenzene with addition of SnCl2 or ZnCl2 produces satisfactory molar masses. The number average molecular weights (Mn) of most copolyesters fall into the range of 7000–15,000 Da with polydispersities (PD) in the range of 3–9. The MALDI-TOF mass spectra almost exclusively displayed peaks of cyclics indicating that the chain growth was mainly limited by cyclization and not by side reactions, stoichiometric imbalance or incomplete conversion. The glass-transition temperatures increased with the content of isophthalic acid from 75 to 180 °C and the thermo-stabilities also followed this trend. KW - Biodegradable KW - Cyclization KW - Cyclopolymerization KW - Isophthalic acid KW - Isosorbide KW - Polycondensation KW - Polyesters KW - Renewable resources KW - Succinic acid PY - 2013 DO - https://doi.org/10.1002/pola.26635 SN - 0360-6376 SN - 0887-624X VL - 51 IS - 11 SP - 2464 EP - 2471 PB - Wiley CY - Hoboken, NJ AN - OPUS4-28577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen T1 - Copolyesters of lactide, isosorbide, and terephthalic acid-biobased, biodegradable, high-Tg engineering plastics N2 - Various copolyesters of lactide, isosorbide, and terephthalic acid are prepared by a two-step process performed in a 'one-pot' procedure, beginning with an isosorbide-initiated oligomerization of L-lactide followed by polycondensation with terephthaloyl chloride using SnCl2 as a catalyst for both steps. The SEC data show the formation of random copolyesters with high polydispersities as a consequence of the relatively high fraction of cyclics proved by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The glass-transition temperatures (89–180 °C) obey an almost linear trend with the molar composition. The thermostability decreases with increasing lactide content. The successful incorporation of phenyl phosphate results in copolyesters of lower inflammability. KW - Biodegradability KW - Cyclization KW - Isosorbide KW - Polycondensation KW - Ring-opening polymerization PY - 2013 DO - https://doi.org/10.1002/macp.201200612 SN - 1022-1352 SN - 1521-3935 VL - 214 IS - 6 SP - 726 EP - 733 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-28171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Bressler, I. T1 - Copolymer composition determined by LC-MALDI-TOF MS coupling and 'MassChrom2D' data analysis N2 - The MALDI-TOF MS analysis of copolymers very often results in complex spectra. A chromatographic separation/fractionation prior to the MALDI investigation can be advantageous since the MALDI mass spectra of fractions very often reveal well-resolved peaks of distinguishable copolymer series. For this purpose, different modes of chromatography have been applied. Chromatographic runs were transferred to MALDI targets utilizing a combined air/electrospray deposition device. Using the new MassChrom2D software, fraction-dependent 2D copolymer compositions plots were obtained providing additional information on the chromatographic mode, and enabling fast modification of conditions to increase separation. KW - Copolymer composition KW - Chromatography KW - Coupling KW - MALDI-TOF mass spectrometry PY - 2012 DO - https://doi.org/10.1002/macp.201200169 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2404 EP - 2411 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen T1 - Cyclic and linear poly(L-lactide)s by ring-expansion polymerization with Bu2SnO, Oct2SnO, and Bu2SnS N2 - To elucidate the usefulness of commercial Bu2SnO as catalyst for syntheses of linear and/or cyclic polylactides L-Lactide was polymerized in bulk with variation of the LA/Cat ratio, temperature and time. Based on a ring-expansion polymerization (REP) mechanism cyclic polylactides (PLAs) with weight average molecular weights in the range of 200,000–300,000 are obtained at the highest temperature (180 °C). Polymerizations at 150 °C yielded crystalline, mainly cyclic polylactides which, after annealing, showed high melting temperatures (up to 197.5 °C) and high crystallinities (>80%). Polymerization at 120 °C confirmed the trend towards more linear chains with lower temperatures but yielded extended-ring crystals showing a “saw-tooth pattern” in the mass spectra. Oct2SnO gave similar results as Bu2SnO. Bu2SnS proved a sluggish polymerization catalyst, but a good transesterification catalyst in solid PLA. KW - MALDI TOF MS KW - Biobased polymers KW - Polylactide KW - Ring-expansion polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584121 DO - https://doi.org/10.1002/pol.20230515 SN - 2642-4169 SP - 1 EP - 10 PB - Wiley CY - Hoboken, NJ AN - OPUS4-58412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Cyclic poly(l-lactide) via ring-expansion polymerization by means of dibutyltin 4-tert-butylcatecholate N2 - Five new catalysts are prepared from dibutyltin oxide and catechol (HCa), 2,3-dihydroxynaphthalene (NaCa), 4-tert-butyl catechol (BuCa), 4-cyano catechol (CyCa), and 4-benzoyl catechol (BzCa), but only BuCa gives useful results. When benzyl alcohol is used as an initiator, linear chains having benzyl ester end groups are formed in a slow polymerization process. In contrast to cyclic or noncyclic dibutyltin bisalkoxides, neat BuCa yields cyclic poly(l-lactide)s via a fast ring-expansion polymerization. Under certain conditions, a high-melting crystalline phase (Tm = 191 °C) is obtained. At 160 °C and short reaction times even-numbered cycles are slightly prevailing, but, surprisingly, at 120 °C, odd-numbered cycles are predominantly formed. These results definitely prove that a ring-expansion mechanism is operating. KW - Lactides KW - MALDI TOF MS KW - Morphology KW - Ring-opening polymerization KW - Tin catalysts PY - 2017 DO - https://doi.org/10.1002/macp.201700274 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 22 SP - 1700274, 1 EP - 1700274, 10 PB - Wiley VCH CY - Weinheim AN - OPUS4-43583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(L-lactide)s via ring-expansion polymerizations catalysed by 2,2-dibutyl-2- stanna-1,3-dithiolane N2 - L-Lactides were polymerized in bulk at 120 or 160 °C with cyclic dibutyltin catalysts derived from 1,2-dimercaptoethane or 2-mercaptoethanol. Only linear chains having one benzyl ester and one OH-end group were obtained when benzyl alcohol was added. When L-lactides were polymerized with neat dibutyl-2-stanna-1,3-dithiolane, exclusively cyclic polylactides were formed even at 120 °C. The temperature, time and monomer/catalyst ratio (M/C) were varied. These results are best explained by a combination of ring-expansion polymerization and ring-extrusion of cyclic oligo- or polylactides with Elimination of the cyclic catalyst. Neither syntheses of linear polylactides nor of cyclic lactides involved racemization up to 20 h at 160 °C. KW - Ring-expansion polymerization KW - MALDI KW - Polylactides PY - 2017 DO - https://doi.org/10.1039/C6PY02166B SN - 1759-9954 SN - 1759-9962 VL - 8 IS - 9 SP - 1589 EP - 1596 PB - Royal Society of Chemistry AN - OPUS4-39748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Cyclic poly(L-lactide)s via simultaneous ROP and polycondensation (ROPPOC) catalyzed by dibutyltin phenoxides N2 - Starting from dibutyltin oxide, four catalysts were synthesized, namely the dibutyltin bisphenoxides of Phenol (SnPh), 4-chlorophenol (SnCP), 4-hydroxybenzonitrile (SnCN) and pentafluorophenol (SnOPF). With the first three catalysts polymerizations of L-lactide at 160 °C in bulk yielded large fraction of linear chains having phenylester end groups at short reaction times. At longer times the fraction of cycles considerably increased at the expense of the linear chains, when SnCN was used as catalyst. With SnOPF only cyclic polylactides were obtained at low Lac/Cat ratios (< 400) with weight average molecular weights (Mw) up to 90 000 Da, whereas for high Lac/Cat ratios mixtures of cyclic and linear chains were found. Polymerizations in solution enabled variation of the molecular weight. Polymerizations of meso-lactide at temperatures down to 60 °C mainly yielded even-numbered linear chains supporting the postulated ROPPOC mechanism. KW - Cyclization KW - MALDI-TOF MS KW - Polycondensation KW - Ring-opening Polymerization KW - Polylactide PY - 2018 DO - https://doi.org/10.1016/j.eurpolymj.2018.10.005 SN - 0014-3057 IS - 109 SP - 360 EP - 366 PB - Elsevier AN - OPUS4-46263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(lactide)s via the ROPPOC method catalyzed by alkyl- or aryltin chlorides N2 - A comparison of tributyltin chloride, dibutyltin dichloride,and butyltin trichloride as catalysts of ring-opening polymerizations(ROPs) of l-lactides at 160°C in bulk reveals increasing reactivity in the above order, but only the least reactive catalysts, Bu3SnCl, yield a uniform reaction product, namely cyclic poly(L-lactide)s with weight average molecular weights (Mw ́s) in the range of 40,000–80,000. A comparison of dimethyltin , dibutyltin , and diphenyltin dichlorides resulted in the following order of reactivity: Me2SnCl2