TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Synthesis of polylactides by means of tin catalysts N2 - This article reviews the usefulness of tin(II) and tin(IV) salts and compounds as catalysts for the polymerization of lactides. The text is subdivided into nine parts mainly reflecting different polymerization strategies, such as ring-opening polymerization (ROP), ring-expansion polymerization (REP), ROP combined with simultaneous polycondensation (ROPPOC), various catalysts with unknown polymerization mechanisms, and polycondensation of lactic acid. Since the toxicity of tin salts and compounds is a matter of concern and frequently mentioned in numerous publications, the first section deals with facts instead of myths about the toxicity of tin salts and compounds. KW - Polylactide KW - MALDI-TOF MS KW - Tin catalysts PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545050 SP - 1 EP - 30 PB - Royal Society for Chemistry AN - OPUS4-54505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Polymerization of L-lactide with SnCl2: A Low Toxic and Eco-friendly Catalyst N2 - Polymerizations of L-lactide catalyzed either by neat SnCl2 or by SnCl2 + difunctional cocatalysts were conducted in bulk at 180, 160 and 140 °C with variation of the Lac/Cat ratio and time. With neat SnCl2 poly(L-lactide) having weight average molecular weights (uncorrected Mw’s) up to 190 000 g mol−1 were obtained mainly consisting of linear chains. Addition of salicylic acid or 1,1-bisphenol yielded a higher fraction of cyclic polylactides but lower molecular weights. Furthermore, SnCl2 was compared with Bu2SnCl2 and various other metal chlorides and the best results were obtained with SnCl2. With ethyl L-lactate as initiator SnCl2-catalyzed ROPs were performed at 120 °C and the lac/initiator ratio was varied. All these experiments were conducted under conditions allowing for comparison with ROPs catalyzed with neat Sn(II)-2-ethyhexanoate. Such a comparison was also performed with ε-caprolactone as monomer. KW - Catalyst KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520517 SN - 1566-2543 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-52051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Alcohol-Initiated and SnOct2-Catalyzed Ring-Opening Polymerization (ROP) of L-Lactide in Solution: A Re-investigation N2 - Alcohol-initiated ring-opening polymerizations (ROP) of L-lactide (LA) were studied in solution at 70 °C, whereupon the nature of the alcohol, the LA/initiator ratio, the LA/SnOct2 ratio and the time were varied. In contrast to literature, neat SnOct2 is catalytically active in THF and several aromatic but donor solvents, such as 1,3-dioxolane, dimethylformamide (DMF) or N-methyl pyrrolidone (NMP), strongly reduce the activity of SnOct2. In agreement with literature, no cycles were formed by neat SnOct2 at 70 °C in toluene, whereas almost complete cyclization occurs at 115 °C. This finding is attributed to strongly reduced mobility of the initially formed linear chains having one Sn-O-CH and one anhydride end group. Due to better solvation and enhanced mobility cyclization occurs in THF at 70 °C. KW - Polylactide KW - Ring-opening polymerization KW - MALDI-TOF MS KW - Transesterification PY - 2023 U6 - https://doi.org/10.1016/j.eurpolymj.2023.111822 SN - 0014-3057 SP - 1 EP - 18 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-56818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Dispersities of Polyesters of Various Diphenols Prepared by Irreversible Polycondensations N2 - Polyesters of bisphenol-A, bisphenol-P, catechol, and sebacic acid are prepared and different synthetic methods are compared. The diphenols are condensed with sebacoyl chloride either in dichloromethane/pyridine or in refl uxing chlorobenzene without HCl-acceptor. Further- more, bisphenol-A acetate is polycondensed with sebacic acid in bulk. All experiments are worked up so that fractionation is avoided. The extent of cyclization is estimated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and the molar mass distribution by size exclusion chromatography (SEC). Polycondensations in solution yield larger fractions of cyclics and higher dispersities (up to 11). Polycondensations in bulk give lower fractions of cycles and dispersities from 4.6 to 6.3 for high molar mass polyesters or 2.8 to 3.5 for low molar mass products. Characteristic curves describing the dependence of the dispersity on the initial monomer concentration are elaborated. KW - cyclization KW - dispersity KW - mass spectra KW - polycondensation KW - polyesters PY - 2016 U6 - https://doi.org/10.1002/macp.201600004 IS - 217 SP - 1361 EP - 1369 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-37120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molar mass cyclic poly(L-lactide)s by means of neat tin (II) 2-ethylhexanoate N2 - L-lactide was polymerized in bulk at 120, 140, 160 and 180°C with neat tin(II) 2-ethylhexanoate (SnOct2) as catalyst. At 180°C the Lac/Cat ratio was varied from 25/1 up to 8 000/1 and at 160°C from 25/1 up to 6 000/1. The vast majority of the resulting polylactides consist of cycles in combination with a small fraction of linear chains having one octanoate and one COOH end group. The linear chains almost vanished at high Lac/Cat ratios, as evidenced by MALDI-TOF mass spectrometry and measurements of intrinsic viscosities and dn/dc values. At Lac/Cat ratios <1000/1 the number average molar masses (Mn) are far higher than expected for stoichiometic initiation, and above 400/1 the molar masses vary relatively little with the Lac/Cat ratio. At 180° slight discoloration even at short times and degradation of the molar masses were observed, but at 160°C or below colorless products with weight average molar masses (Mw) up to 310 000 g mol-1 were obtained. The formation of high molar mass cyclic polylactides is explained by a ROPPOC (Ring-Opening Polymerizatiom with simultaneous Polycondensation) mechanism with intermediate formation of linear chains having one Sn-O-CH end group and one mixed anhydride end group. Additional experiments with tin(II)acetate as catalyst confirm this interpretation. These findings together with the detection of several transesterification mechanisms confirm previous critique of the Jacobson-Stockmayer theory. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 U6 - https://doi.org/10.1039/d0py00811g VL - 11 IS - 32 SP - 5249 EP - 5260 PB - Royal Society for Chemistry AN - OPUS4-51130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - The Ring-Opening Polymerisation-Polycondensation (ROPPOC) Approach to cyclic Polymers N2 - A new concept called “Ring-Opening Polymerization (ROP) combined with simultaneous POlyCondensation” (ROPPOC) is presented and discussed. This synthetic strategy is based on the intermediate formation of chains having two end groups that can react with each other. The ROPPOC syntheses are subdivided into three groups according to the nature of the chain ends: two ionic end groups, one ionic and one covalent chain end and a combination of two reactive covalent end groups may be involved, depending on the catalyst. The usefulness for the preparation of cyclic polymers is discussed with a review of numerous previously published examples. These examples concern to following classes of cyclic polymers: polypeptides, polyamides, polyesters, including polycarbonates, and cyclic polysiloxanes. It is demonstrated, that the results of certain ROPPOC syntheses are in contradiction to the Jacobson-Stockmayer theory. Finally, the usefulness of ROPPOCs for the detection of polydisperse catenanes is discussed. KW - Ring-opening Polymerisation KW - MALDI-TOF MS KW - ROPPOC KW - Cyclic PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508509 SP - 2000152 PB - Wiley AN - OPUS4-50850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Reply to the comment on “synthesis of cyclic polymers and flaws of the Jacobson-Stockmayer theory” by R. Szymanski N2 - In a recent publication the authors have presented theoretical and experimental results indicating that the Jacobson–Stockmayer (JS) theory does not provide a correct description of reversible polycondensations for all polymers and for high conversions (e.g. polycondensation in bulk). In this context reversibility means that all condensation step whether resulting in chain growth or in cyclization are reversible and thus, part of an equilibrium. The first two sections of that paper were focused on the demonstration that small, and above all, large cycles can be formed by end-to-end (ete) cyclization in reversible like in irreversible polycondensations. A significant contribution of ete-cyclization to the course of reversible polycondensations was denied by J + S apparently as a contribution to Florýs dogma, that the end groups of long polymer chains will never meet. KW - Polylactide KW - MALDI-TOF MS KW - Jacobsen-Stockmayer theory PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513985 VL - 11 IS - 38 SP - 6226 EP - 6228 PB - Royal Society of Chemistry AN - OPUS4-51398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) and tin(iv) acetates–switching from COOH terminated linear chains to cycles N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2 Oct2SnAc2. KW - Catalyst KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Tin acetates KW - Polylactide PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520831 SP - 1 EP - 12 PB - Wiley Online Library AN - OPUS4-52083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molecular weight poly(l-lactide) via ring-opening polymerization with bismuth subsalicylate-The role of cocatalysts N2 - The catalytic potential of bismuth subsalicylate (BiSub), a commercial drug, for ring-opening polymerization (ROP) of L-lactide was explored by variation of co-catalyst and polymerization time. Various monofunctional phenols or carboxylic acids, aromatic ortho-hydroxy acids and diphenols were examined as potential co-catalysts. 2,2´-Dihydroxybiphenyl proved to be the most successful co-catalyst yielding weight average molecular weights (uncorrected Mw values up to 185 000) after optimization of reaction time and temperature. Prolonged heating (>1-2h) depending on catalyst concentration) caused thermal degradation. In polymerization experiments with various commercial Bi(III) salts a better alternative to BiSub was not found. By means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry a couple of unusual and unexpected transesterification reactions were discovered. Finally, the effectiveness of several antioxidants and potential catalyst poisons was explored, and triphenylphosphine was found to be an effective catalyst poison. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Bismuth PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519513 SN - 0021-8995 VL - 138 IS - 19 SP - 50394 PB - Wiley AN - OPUS4-51951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) andtin(iv) acetates–switching from COOH terminated linear chains to cycles N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130°C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2~Oct2SnAc2 KW - Polylactide KW - MALDI-TOF MS KW - Catalyst KW - Ring-opening polymerization KW - Tin acetates PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521923 VL - 59 IS - 5 SP - 439 EP - 450 PB - Wiley Online Library AN - OPUS4-52192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Cyclic poly(L-lactide)s via simultaneous ROP and polycondensation (ROPPOC) catalyzed by dibutyltin phenoxides N2 - Starting from dibutyltin oxide, four catalysts were synthesized, namely the dibutyltin bisphenoxides of Phenol (SnPh), 4-chlorophenol (SnCP), 4-hydroxybenzonitrile (SnCN) and pentafluorophenol (SnOPF). With the first three catalysts polymerizations of L-lactide at 160 °C in bulk yielded large fraction of linear chains having phenylester end groups at short reaction times. At longer times the fraction of cycles considerably increased at the expense of the linear chains, when SnCN was used as catalyst. With SnOPF only cyclic polylactides were obtained at low Lac/Cat ratios (< 400) with weight average molecular weights (Mw) up to 90 000 Da, whereas for high Lac/Cat ratios mixtures of cyclic and linear chains were found. Polymerizations in solution enabled variation of the molecular weight. Polymerizations of meso-lactide at temperatures down to 60 °C mainly yielded even-numbered linear chains supporting the postulated ROPPOC mechanism. KW - Cyclization KW - MALDI-TOF MS KW - Polycondensation KW - Ring-opening Polymerization KW - Polylactide PY - 2018 U6 - https://doi.org/10.1016/j.eurpolymj.2018.10.005 SN - 0014-3057 IS - 109 SP - 360 EP - 366 PB - Elsevier AN - OPUS4-46263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - About the crystallization of cyclic and linear poly(L-lactide)s in alcohol-initiated and Sn(II)2-ethylhexanoate- catalyzed ROPs of L-lactide conducted in solution N2 - 1-Hydroxymethylnaphtalene (HMN) or 11-bromoundecanol (BUND) were used as initiators and Sn(II) 2-ethylhexanoate (SnOct2) as catalyst for ROPs of L-Lactide (LA) at 115 °C in bulk or in 4 M and 2M solutions in toluene. The LA/In ratio, the LA/Cat ratio and the time were varied. The matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectra exclusively displayed peaks of linear chains, when the ROPs were conducted in bulk. But in contrast to reports in the literature, mixtures of linear and cyclic poly(L-lactide) (PLA), were obtained, when the ROPs were performed in solution. The intensity distribution of the mass peaks of cyclic PLAs displayed a “saw-tooth pattern” after annealing in contrast to the mass peak distribution of the liner chains. This new phenomenon indicated that cyclic PLAs and linear PLAs crystallized in separate crystals from the same reaction mixture. This conclusion was confirmed by fractionated crystallization from 2 M solution, which confirmed that the cyclic PLAs nucleate and crystallize faster than the linear chains. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Crystallization PY - 2023 U6 - https://doi.org/10.1016/j.polymer.2023.125946 SN - 0032-3861 VL - 276 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-57308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - What does conversion mean in polymer science? N2 - The definition of the term “conversion” is discussed for a variety of polymer syntheses. It is demonstrated that in contrast to organic and inorganic chemistry several different definitions are needed in polymer science. The influence of increasing conversion on structure and topology of homo- and Copolymers is illustrated. Chain-growth polymerizations, such as radical polymerization or living anionic polymerizations of vinyl monomers, condensative chain polymerization, two and three-dimensional step-growth polymerizations, ring–ring or chain–chain equilibration and chemical modification of polymers are considered. KW - Polymers KW - Polymerization KW - Conversion KW - Polycondensation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523597 VL - 222 IS - 8 SP - 10 PB - Wiley VCH AN - OPUS4-52359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Meyer, A. A1 - Weidner, Steffen T1 - High Tm Poly(l-lactide)s by Means of Bismuth Catalysts? N2 - One series of BiSub-catalyzed ring-opening polymerizations (ROPs) is per-formed at 160 °C for 3 days with addition of difunctional cocatalysts to find out, if poly(l-lactide) crystallizes directly from the reaction mixture. An analogous series is performed with monofunctional cocatalysts. High Tm crystal-lites (Tm > 190 °C) are obtained from all bifunctional cocatalysts, but not from all monofunctional ones. It is shown by means of SAXS measurements that the high Tm values are mainly a consequence of a transesterification–homogenization process across the lamellar surfaces resulting in thickness and smoothing of the surfaces. An unusual enthalpy-driven modification of the molecular weight distribution is found for samples that have crystallized during the polymerization. A third series of ROPs is performed at 170 °C for 2 h followed by annealing at 120 °C (2 h) to induce crystallization. Complete transformation of the resulting low Tm crystallites (Tm < 180 °C) into the high Tm crystallites by annealing at 170 °C for 1 d is not achieved, despite variation of the cocatalyst. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522777 SN - 1022-1352 VL - 222 IS - 8 SP - 19 PB - Wiley AN - OPUS4-52277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Benjamin Christoph A1 - Seifert, Stephan A1 - Panne, Ulrich A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Matrix-assisted laser desorption/ionization mass spectrometric investigation of pollen and their classification by multivariate statistics N2 - RATIONALE A fast and reliable online identification of pollen is not yet available. The identification of pollen is based mainly on the evaluation of morphological data obtained by microscopic methods. METHODS Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) was applied to the analysis of extracts and milled pollen samples. The obtained MALDI data were explored for characteristic peak patterns which could be subjected to a multivariate statistical analysis. RESULTS Two sample preparation methods are presented, which require only minimal or no chemical extraction of the pollen. MALDI pollen spectra could be recorded showing various peak patterns. A multivariate statistics approach allowed the classification of pollen into clusters indicating similarities and differences between various species. CONCLUSIONS These results demonstrate the potential and the reliability of MALDI-TOF MS for the identification and, in combination with multivariate statistics, also for the classification of pollen. KW - MALDI TOF mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2012 U6 - https://doi.org/10.1002/rcm.6202 SN - 0951-4198 SN - 1097-0231 VL - 26 IS - 9 SP - 1032 EP - 1038 PB - Wiley CY - Chichester AN - OPUS4-25648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koshkina, Olga A1 - Lang, Thomas A1 - Thiermann, R. A1 - Docter, D. A1 - Stauber, R.H. A1 - Secker, C. A1 - Schlaad, H. A1 - Weidner, Steffen A1 - Mohr, B. A1 - Maskos, M. A1 - Bertin, Annabelle T1 - Temperature-triggered protein adsorption on polymer-coated nanoparticles in serum N2 - The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle’s physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 µm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanoparticles and proteins and the accumulation of nanoparticles in a targeted body region. PY - 2015 U6 - https://doi.org/10.1021/acs.langmuir.5b00537 SN - 0743-7463 SN - 1520-5827 VL - 31 IS - 32 SP - 8873 EP - 8881 PB - American Chemical Society CY - Washington, DC AN - OPUS4-34163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kona, Balakantha Rao A1 - Weidner, Steffen A1 - Friedrich, Jörg Florian T1 - Epoxidation of Polydienes Investigated by MALDI-TOF Mass Spectrometry and GPC-MALDI Coupling N2 - Polybutadienes (PB) and polyisoprenes (PI) with various molecular weights and polydispersities were epoxidized applying two different synthetic routes. The degree of epoxidation was determined by means of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). It has been found that the degree of functionalization of polybutadiene is generally lower than that for polyisoprenes. Additionally, PB shows lower degrees of epoxidation at higher masses, whereas the level of functionalization of PI was unaffected by the molar mass. Coupling of gel permeation chromatography (GPC) with MALDI-TOF mass spectrometry was successfully used for the investigation of epoxidized polymers with higher masses. Using mass spectra of single fractions, the degree of epoxidation could be determined and applied for a calibration of GPC. PY - 2005 U6 - https://doi.org/10.1080/10236660490935736 SN - 1023-666X SN - 1563-5341 VL - 10 IS - 1-2 SP - 85 EP - 109 PB - Gordon and Breach Publ. CY - Amsterdam AN - OPUS4-11860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen A1 - Thünemann, Andreas T1 - Characterization of poly/N-vinyl-2-pyrrolidone)s with broad size distributions N2 - We report on the characterization of the solution structure of poly(N-vinyl-2-pyrrolidone)s (PVP) by small-angle X-ray scattering (SAXS) and by online coupling of asymmetrical flow field-flow fractionation (A4F), SAXS and dynamic light scattering (DLS). The commercial products PVP K30 and PVP K90 with nominal molar masses of 40 × 103 and 360 × 103 g mol-1, respectively, were investigated separately and as binary mixture. Detailed information for all polymer fractions is available on the polymer contour lengths and the diffusion coefficients. Key areas of applications for the A4F-SAXS-DLS coupling are seen in comparison to static light scattering for polymers with radii of gyration smaller than 10 nm, for which only SAXS produces precise analytical results on the size of the polymers in solution. KW - Small-angle X-ray scattering KW - SAXS KW - Field-flow fractionation PY - 2010 U6 - https://doi.org/10.1016/j.polymer.2010.02.039 SN - 0032-3861 SN - 1873-2291 VL - 51 IS - 8 SP - 1723 EP - 1727 PB - Springer CY - Berlin AN - OPUS4-21222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen A1 - Thünemann, Andreas T1 - Poly(acrylic acid): A combined analysis with field-flow fractionation and SAXS N2 - Polyelectrolytes such as PAA and its salts are widely used, but are notoriously difficult to characterize due to their polyelectrolyte properties and broad molecular mass distributions. In this paper, we report on a new PAA analysis by combining asymmetrical flow field-flow fractionation and an advanced SAXS technique using an acoustic levitator to minimize background scattering. The proof-of-principle is demonstrated with a mixture of three standard PAAs with different molecular masses. Detailed information on the PAA fractions is available on radii of gyration, polymer contour lengths, and coil conformation. Our method is expected to be applicable for a wide range of water-soluble synthetic and natural polymers and ideal for molecular masses of 5 × 103–2 × 105 g · mol-1. KW - Fractionation of polymers KW - Molar mass distribution KW - Polyelectrolytes KW - Small-angle X-ray scattering KW - Water-soluble polymers PY - 2010 U6 - https://doi.org/10.1002/macp.201000163 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 19 SP - 2148 EP - 2153 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Just, Ulrich A1 - Werthmann, Barbara A1 - Weidner, Steffen T1 - Referenzmaterialien für die Polymeranalytik - Verfahren zur Charakterisierung und Bewertung PY - 1998 SN - 0943-6677 VL - 49 IS - 6 SP - 223 EP - 228 PB - Rubikon CY - Gaiberg bei Heidelberg AN - OPUS4-11261 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -