TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of Polyglycolide via Polycondensation: A Reinvestigation JF - Macromolecular Chemistry and Physics N2 - The Na salt of chloroacetic acid is condensed in suspension. Furthermore,glycolic acid is condensed in bulk or in concentrated solution by means of SnCl2 or 4-toluene sulfonic acid (TSA) as catalysts. The temperatures are varied from 160 to 200°C and the time from 1 to 5 days. Low molar mass cyclic poly(glycolic acid) (PGA) is detected by means of matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry in most PGAs. A predominance of certain cycles having an even number of repeat units is observed suggesting a thermodynamically favored formation of extended-ring crystals. Extremely high melting temperatures (up to 237.5°C)and high melting enthalpies are found for polycondensations with TSA in 1,2-dichlorobenzene. KW - MALDI TOF MS KW - Polycondensation KW - Polyglycolide KW - Cyclization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596856 DO - https://doi.org/10.1002/macp.202300397 IS - 2300397 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-59685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Cyclic polyglycolides via ring-expansion polymerization with cyclic tin catalysts JF - European Polymer Journal N2 - Glycolide was polymerized in bulk with two cyclic catalysts − 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzepane (SnBiph). The monomer/initiator ratio, temperature (140 – 180 °C) and time (1–––4 days) were varied. The MALDI TOF mass spectra exclusively displayed peaks of cyclic polyglycolide (PGA) and revealed an unusual “saw-tooth pattern” in the mass range below m/z 2 500 suggesting formation of extended ring crystallites. The DSC measurements indicated increasing crystallinity with higher temperature and longer time, and after annealing for 4 d at 160 °C a hitherto unknown and unexpected glass transition was found in the temperature range of 170–185 °C. Linear PGAs prepared by means of metal alkoxides under identical conditions did not show the afore-mentioned features of the cyclic PGAs, neither in the mass spectra nor in the DSC measurements. All PGAs were also characterized by SAXS measurements, which revealed relatively small L-values suggesting formation of thin crystallites in all cases with little influence of the reaction conditions. KW - Polyglycolide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Crystals PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595541 DO - https://doi.org/10.1016/j.eurpolymj.2024.112811 SN - 0014-3057 VL - 207 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-59554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Polycondensation of poly(L-lactide) alkyl esters combined with disproportionation and symproportionation of the chain lengths JF - Journal of Polymer Science A: Polymer Chemistry N2 - Ring-opening polymerizations (ROPs) of l-lactide (LA) were performed with ethyl l-lactate or 11-bromoundecanol as initiators (In) and tin(II) ethyl hexanoate (SnOct2) as catalyst (Cat) using four different LA/In ratios (20/1, 40/1, 60/1, and 100/1). One series of ROPs was conducted in bulk at 120 °C, yielding PLAs with low dispersities (Ð ~ 1.2–1.4), and a second series was conducted in bulk at 160 °C, yielding higher dispersities (Ð ~ 1.3–1.9). Samples from both series were annealed for 1 or 14 days at 140 °C in the presence of SnOct2. Both polycondensation and disproportionation reactions occurred, so that all four samples tended to form the same type of molar mass distribution below 10,000 Da, regardless of their initially different number average molar masses (Mn). Both initiators gave nearly identical results. The thermodynamic control of all reversible transesterification processes favored the formation of crystallites composed of chains with a Mn around 3500–3700, corresponding to a crystal thickness of 10–13 nm. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600081 DO - https://doi.org/10.1002/pol.20240118 SN - 2642-4150 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalgic, Mete-Sungur A1 - Weidner, Steffen T1 - Solvent-free sample preparation for matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry ofpolymer blends JF - Rapid Communications in Mass Spectrometry N2 - Solvent-free sample preparation offers some advantages over solvent-based techniques, such as improved accuracy, reproducibility and sensitivity, for matrix-assisted laser desorption/ionization (MALDI) analysis. However, little or no information is available on the application of solvent-free techniques for the MALDI analysis of polymer blends. Solvent-free sample preparation by ball milling was applied with varying sample-to-matrix ratios for MALDI time-of-flight mass spectrometry analysis of various polymers, including polystyrenes, poly(methyl methacrylate)s and poly(ethylene glycol)s. The peak intensity ratios were compared with those obtained after using the conventional dried droplet sample preparation method. In addition, solvent-assisted milling was also applied to improve sample homogeneities. Depending on the sample preparation method used, different peak intensity ratios were found, showing varying degrees of suppression of the signal intensities of higher mass polymers. Ball milling for up to 30 min was required to achieve constant intensity ratios indicating homogeneous mixtures. The use of wet-assisted grinding to improve the homogeneity of the blends was found to be disadvantageous as it caused partial degradation and mass-dependent segregation of the polymers in the vials.The results clearly show that solvent-free sample preparation must be carefully considered when applied to synthetic polymer blends, as it may cause additional problems with regard to homogeneity and stability of the blends. KW - MALDI TOF MS KW - Sample preparation KW - Polymer blends KW - Solvent-free PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598570 DO - https://doi.org/10.1002/rcm.9756 SN - 0951-4198 VL - 38 IS - 12 SP - 1 EP - 9 PB - Wiley online library AN - OPUS4-59857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-ring equilibration (RRE) of cyclic poly(L-lactide)s by means of cyclic tin catalysts JF - European Polymer Journal N2 - With 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzoxepane (SnBiPh) as catalysts ring-expansion polymerizations (REP) were performed either in 2 M solution using three different solvents and two different temperatures or in bulk at 140 and 120 ◦C. A kinetically controlled rapid REP up to weight average molecular masses (Mẃs) above 300 000 was followed by a slower degradation of the molecular masses at 140 ◦C, but not at 120 ◦C Furthermore, a low molecular mass cyclic poly(L-lactide) (cPLA) with a Mn around 16 000 was prepared by polymerization in dilute solution and used as starting material for ring-ring equilibration at 140 ◦C in 2 M solutions. Again, a decrease of the molecular mass was detectable, suggesting that the equilibrium Mn is below 5 000. The degradation of the molecular masses via RRE was surprisingly more effective in solid cyclic PLA than in solution, and a specific transesterification mechanism involving loops on the surface of crystallites is proposed. This degradation favored the formation of extended-ring crystallites, which were detectable by a “saw-tooth pattern” in their MALDI mass spectra. KW - Organic Chemistry KW - Polymers and Plastics KW - MALDI-TOF MS KW - Materials Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593819 DO - https://doi.org/10.1016/j.eurpolymj.2024.112765 SN - 0014-3057 VL - 206 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Transformation of poly(L-lactide) crystals composed of linear chains into crystals composed of cycles JF - Polymer Chemistry N2 - A poly(L-lactide) with a trifluoroethyl ester end group and an average degree of polymerization (DP) of 50 was synthesized by ROP of L-lactide initiated with trifluoroethanol. Small-angle X-ray scattering (SAXS) in combination with differential scanning calorimetry (DSC) measurements revealed an average crystal thickness of 13 nm, corresponding to 45 repeat units. This suggests that most crystallites were formed by extended PLA chains, and both flat surfaces were covered by CF3 groups. The crystalline PLAs were annealed at 140 or 160 °C in the presence of two catalysts: tin(II) 2-ethylhexanoate, (SnOct2) or dibutyltin bis(pentafluorophenoxide) (BuSnPhF). The chemical reactions, such as polycondensation and cyclization, proceeded in the solid state and were monitored by matrix-assisted laser desorption/ionization time-offlight (MALDI TOF) mass spectrometry and gel permeation chromatography (GPC) measurements. Under optimal conditions a large fraction of linear chains was transformed into crystallites composed of extended cycles. Additionally, MALDI TOF MS analysis of GPC fractions from samples annealed for 28 or 42 days detected chain elongation of the linear species up to a factor of 20. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Transesterification PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597250 DO - https://doi.org/10.1039/D3PY01370G SN - 1759-9954 VL - 15 IS - 12 SP - 1173 EP - 1181 PB - Royal Society for Chemistry AN - OPUS4-59725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State JF - Polymer Chemistry N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592934 DO - https://doi.org/10.1039/d3py01232h SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Alcohol-Initiated and SnOct2-Catalyzed Ring-Opening Polymerization (ROP) of L-Lactide in Solution: A Re-investigation JF - European Polymer Journal N2 - Alcohol-initiated ring-opening polymerizations (ROP) of L-lactide (LA) were studied in solution at 70 °C, whereupon the nature of the alcohol, the LA/initiator ratio, the LA/SnOct2 ratio and the time were varied. In contrast to literature, neat SnOct2 is catalytically active in THF and several aromatic but donor solvents, such as 1,3-dioxolane, dimethylformamide (DMF) or N-methyl pyrrolidone (NMP), strongly reduce the activity of SnOct2. In agreement with literature, no cycles were formed by neat SnOct2 at 70 °C in toluene, whereas almost complete cyclization occurs at 115 °C. This finding is attributed to strongly reduced mobility of the initially formed linear chains having one Sn-O-CH and one anhydride end group. Due to better solvation and enhanced mobility cyclization occurs in THF at 70 °C. KW - Polylactide KW - Ring-opening polymerization KW - MALDI-TOF MS KW - Transesterification PY - 2023 DO - https://doi.org/10.1016/j.eurpolymj.2023.111822 SN - 0014-3057 SP - 1 EP - 18 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-56818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - Syntheses of Cyclic Poly(l-lactide)s by Means of Zinc-Based Ring-Opening Polymerization with Simultaneous Polycondensation (ROPPOC) Catalysts JF - Macromolecular Chemistry and Physics N2 - Ring-opening polymerizations of l-lactide are studied in bulk at 140 or 160 °C with zinc n-hexanoate, zinc 4-chlorothiophenolate, and zinc pentafluoro thiophenolate (ZnSPF) as catalysts. The reactivity increases in the given order. With all three catalysts a high fraction of cycles is obtained only at polymerization (annealing) times around 7 d. With ZnSPF weight average molecular weights (Mw) up to 178 000, a Tm around 199 °C and a 𝚫Hm around 99 J g−1 were achieved. The samples annealed for 4 or 7 d also display a saw tooth pattern of the mass peak distribution in the matrix-assisted laser desorption/ionization time of flight spectra indicating transesterification reactions across the surface of extended ring crystals. This process optimizes the thermodynamical properties of the crystalline cyclic polylactides and is responsible for the high Tm and 𝚫Hm values. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578264 DO - https://doi.org/10.1002/macp.202300070 SN - 1022-1352 SP - 202300070 PB - Wiley VHC-Verlag AN - OPUS4-57826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - About the crystallization of cyclic and linear poly(L-lactide)s in alcohol-initiated and Sn(II)2-ethylhexanoate- catalyzed ROPs of L-lactide conducted in solution JF - Polymer N2 - 1-Hydroxymethylnaphtalene (HMN) or 11-bromoundecanol (BUND) were used as initiators and Sn(II) 2-ethylhexanoate (SnOct2) as catalyst for ROPs of L-Lactide (LA) at 115 °C in bulk or in 4 M and 2M solutions in toluene. The LA/In ratio, the LA/Cat ratio and the time were varied. The matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectra exclusively displayed peaks of linear chains, when the ROPs were conducted in bulk. But in contrast to reports in the literature, mixtures of linear and cyclic poly(L-lactide) (PLA), were obtained, when the ROPs were performed in solution. The intensity distribution of the mass peaks of cyclic PLAs displayed a “saw-tooth pattern” after annealing in contrast to the mass peak distribution of the liner chains. This new phenomenon indicated that cyclic PLAs and linear PLAs crystallized in separate crystals from the same reaction mixture. This conclusion was confirmed by fractionated crystallization from 2 M solution, which confirmed that the cyclic PLAs nucleate and crystallize faster than the linear chains. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Crystallization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.125946 SN - 0032-3861 VL - 276 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-57308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Alcohol-initiated and Tin(II) 2-ethylhexanoate-catalyzed polymerization of L-lactide in bulk – About separate crystallization of cyclic and linear Poly (L-lactide)s JF - Polymer N2 - Alcohol-initiated ROPs of L-Lactide were performed at 140 ◦C in bulk with variation of the initiator/catalyst ratio and time. Lower ratios favor the formation of cycles which upon annealing display a change of the MALDI mass peak distribution towards a new maximum with a “saw-tooth pattern” of the mass peaks representing the cycles. Such a pattern was not observed for the mass peak of the linear chains. The coexistence of these patterns indicate that linear and cyclic poly (L-lactide)s (PLA) crystallize in separate crystals, and that the crystallites of the cycles are made up by extended rings. High Tm and ΔHm values confirm that these extended-ring crystallites represent a thermodynamically optimized form of PLA. Experiments with preformed cyclic and linear PLAs support this interpretation. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.126355 VL - 285 IS - 126355 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen T1 - Cyclic and linear poly(L-lactide)s by ring-expansion polymerization with Bu2SnO, Oct2SnO, and Bu2SnS JF - Journal of Polymer Science N2 - To elucidate the usefulness of commercial Bu2SnO as catalyst for syntheses of linear and/or cyclic polylactides L-Lactide was polymerized in bulk with variation of the LA/Cat ratio, temperature and time. Based on a ring-expansion polymerization (REP) mechanism cyclic polylactides (PLAs) with weight average molecular weights in the range of 200,000–300,000 are obtained at the highest temperature (180 °C). Polymerizations at 150 °C yielded crystalline, mainly cyclic polylactides which, after annealing, showed high melting temperatures (up to 197.5 °C) and high crystallinities (>80%). Polymerization at 120 °C confirmed the trend towards more linear chains with lower temperatures but yielded extended-ring crystals showing a “saw-tooth pattern” in the mass spectra. Oct2SnO gave similar results as Bu2SnO. Bu2SnS proved a sluggish polymerization catalyst, but a good transesterification catalyst in solid PLA. KW - MALDI TOF MS KW - Biobased polymers KW - Polylactide KW - Ring-expansion polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584121 DO - https://doi.org/10.1002/pol.20230515 SN - 2642-4169 SP - 1 EP - 10 PB - Wiley CY - Hoboken, NJ AN - OPUS4-58412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chabbah, T. A1 - Chatti, S. A1 - Jaffrezic-Renault, N. A1 - Weidner, Steffen A1 - Marestin, C. A1 - Mercier, R. T1 - Impedimetric sensors based on diethylphosphonate-containingpoly(arylene ether nitrile)s films for the detection of lead ions JF - Polymers for Advanced Technologies N2 - This article describes the elaboration and characterization of diethylphosphonate-containing polymers coated electrodes as sensors for the detection of heavy metalstraces, by electrochemical impedance spectroscopy. Diethylphosphonate groupswere chosen as heavy metals binding sites. Two different series of polymers bearingthese anchoring groups were synthesized. Whereas the diethylphosphonate groupsare directly incorporated in the aromatic macromolecular chain in some polymers, analiphatic spacer is removing the chelating site from the polymer backbone in others.The influence of the macromolecular structure on the sensing response was studied,especially for the detection of Pb2+,Ni2+,Cd2+and Hg2+. Polymer P6, including thehigher amount of diethylphosphonate groups removed from the polymer chain by ashort alkyl spacer gave the higher sensitivity of detection of lead ions, with a detec-tion limit of 50 pM KW - Heavy metals KW - Phosphonate esters KW - Lead ions KW - MALDI TOF MS PY - 2023 DO - https://doi.org/10.1002/pat.6065 SN - 1042-7147 SP - 1 EP - 11 PB - John Wiley & Sons, Ltd AN - OPUS4-57356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Scholz, Philipp A1 - Jung, Christian A1 - Weidner, Steffen T1 - Thermo-Desorption Gas Chromatography-Mass Spectrometry for investigating the thermal degradation of polyurethanes JF - Analytical Methods N2 - Thermo-Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to investigate the thermal degradation of two different polyurethanes (PU). PU samples were heated at different heating rates and the desorbed products were collected in a cold injection system and thereafter submitted to GC-MS. Prospects and limitations of the detection and quantification of semi-volatile degradation products were investigated. A temperature dependent PU depolymerization was found at temperatures above 200 °C proved by an increasing release of 1,4-butanediol and methylene diphenyl diisocyanate (MDI) representing the main building blocks of both polymers. Their release was monitored quantitatively based on external calibration with authentic compounds. Size Exclusion Chromatography (SEC) of the residues obtained after thermodesorption confirmed the initial competitive degradation mechanism indicating an equilibrium of crosslinking and depolymerization as previously suggested. Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry of SEC fractions of thermally degraded PUs provided additional hints on degradation mechanism. KW - Thermo-desorption KW - Mass spectrometry KW - Polyurethanes KW - Thermal degradation PY - 2023 DO - https://doi.org/10.1039/D3AY00173C SN - 1759-9660 SP - 1 EP - 6 PB - Royal Society for Chemistry AN - OPUS4-57307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Sn(II)2-ethylhexanoate-catalyzed polymerizations of L-lactide in solution – Solution grown crystals of cyclic Poly(L-Lactide)s JF - Polymer N2 - L-lactide (LA) was polymerized in toluene by means of neat tin(II) 2-ethylhexanoate (SnOct2). Concentration, time and temperature were varied. The isothermally crystallized polyLAs (PLA) were characterized in the virgin state with regard to topology, molar mass, melting temperature (Tm), crystal modification, high or low Tm morphology, crystallinity and crystal thickness. Even a small amount of solvent favored cyclization relative to polymerization in bulk, so that cyclic polylactides were obtained at 115 ◦C and even at 95 ◦C. At all temperatures the α-modification of PLA was obtained along with crystallinities up to 90%. With 6 M solution the high Tm morphology with Tm’s > 190 ◦C was obtained at 115 ◦C. The crystal thickness of crystallites grown from solution at 115 ◦C was on the average 10–20% higher than that of PLA polymerized in bulk. At a polymerization temperature of 75 ◦C cyclization was incomplete and fewer perfect crystallites were formed. A new hypothesis for the crystal growth of cyclic polyLAs is proposed. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2022 DO - https://doi.org/10.1016/j.polymer.2022.125142 SN - 0032-3861 VL - 255 SP - 1 EP - 9 PB - Elsevier CY - Oxford AN - OPUS4-55283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chabbah, T. A1 - Chatti, S. A1 - Zouaoui, F. A1 - Jlalia, A. A1 - Gaiji, H. A1 - Abderrazak, H. A1 - Casablanca, H. A1 - Mercier, R. A1 - Weidner, Steffen A1 - Errachid, A. A1 - Marestin, C. A1 - Jaffrezic-Renault, N. T1 - New poly(ether-phosphoramide)s sulfides based on green resources as sensitive films for the specific impedimetric detection of nickel ions JF - Talanta N2 - For the development of selective and sensitive chemical sensors, we have developed a new family of poly(etherphosphoramide) polymers. These polymers were obtained with satisfactory yields by nucleophilic aromatic polycondensation using isosorbide as green resources, and bisphenol A with two novel difluoro phosphinothioic amide monomers. Unprecedented, the thiophosphorylated aminoheterocycles monomers, functionalized with two heterocyclic amine, N-methylpiperazine and morpholine were successfully obtained by nucleophilic substitution reaction of P(S)–Cl compound. The resulting polymers were characterized by different analytical techniques (NMR, MALDI–ToF MS, GPC, DSC, and ATG). The resulting partially green polymers, having tertiary phosphine sulfide with P–N side chain functionalities along the main chain of polymers are the sensitive film at the surface of a gold electrode for the impedimetric detection of Cd, Ni, Pb and Hg. The bio-based poly(etherphosphoramide) functionalized with N-methylpiperazine modified sensor showed better analytical performance than petrochemical based polymers for the detection of Ni2+. A detection limit of 50 pM was obtained which is very low compared to the previously published electrochemical sensors for nickel detection. KW - Poly(ether-phosphoramide)s sulfides KW - Green chemistry KW - Polymer film KW - MALDI TOF MS PY - 2022 DO - https://doi.org/10.1016/j.talanta.2022.123550 VL - 247 IS - 123550 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-54980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Ring-expansion polymerization (REP) of L-lactide with cyclic tin catalysts – About formation of extended ring crystals and optimization of Tm and ΔHm JF - Polymer N2 - L-Lactide was polymerized in bulk at 140 °C with three different cyclic tin catalysts and the time was varied from 1 d up to 14 d. The MALDI TOF spectra confirmed the formation of cyclic polylactides (PLAs) and displayed a characteristic change of peak intensity distribution with formation of a “saw tooth pattern”. This pattern confirms a previous hypothesis that cyclic PLAs tend to form crystallites with extended ring conformation and relatively smooth surface. This type of crystallites is formed under thermodynamic control by transesterification on the surface of the crystallites. In this way PLAs with extraordinarily high melting temperatures (Tm's up to 200.6 °C) and extraordinarily high melting enthalpy were obtained (ΔHm's up to 105 J g−1). These ΔHm values require a revision of the maximum ΔHm value calculated in the literature for ideal PLA crystals. KW - Polylactide KW - MALDI-TOF MS KW - ring-expansion polymerization PY - 2022 DO - https://doi.org/10.1016/j.polymer.2022.125516 SN - 0032-3861 VL - 263 SP - 125516 PB - Elsevier Ltd. AN - OPUS4-56338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About the Influence of (Non-)Solvents on the Ring Expansion Polymerization of l-Lactide and the Formation of Extended Ring Crystals JF - Macromolecular Chemistry and Physics N2 - Ring-expansion polymerizations (REPs) catalyzed by two cyclic tin catalysts(2-stanna-1.3-dioxa-4,5,6,7-dibenzazepine [SnBiph] and 2,2-dibutyl-2-stanna-1,3-dithiolane [DSTL) are performed at 140 °C in bulk. Small amounts (4 vol%) of chlorobenzene or other solvents are added to facilitate transesterification reactions (ring–ring equilibration) in the solid poly(l-lactide)s. In the mass range up to m/z 13 000 crystalline PLAs displaying a so-called saw-tooth pattern in the MALDI-TOF mass spectra are obtained indicating the formation of extended-ring crystals. The characteristics of extended-ring crystallites and folded-ring crystallites are discussed. Furthermore, extremely high melting temperatures (Tm’s up to 201.2 °C) and melting enthalpies (𝚫Hm’s up to 106 J g−1)) are found confirming that 𝚫Hmmax, the 𝚫Hm of a perfect crystal, is around or above 115 J g−1 in contrast to literature data. KW - Polylactide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Crystals PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565038 DO - https://doi.org/10.1002/macp.202200385 SN - 1022-1352 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-56503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Synthesis of polylactides by means of tin catalysts JF - Polymer Chemistry N2 - This article reviews the usefulness of tin(II) and tin(IV) salts and compounds as catalysts for the polymerization of lactides. The text is subdivided into nine parts mainly reflecting different polymerization strategies, such as ring-opening polymerization (ROP), ring-expansion polymerization (REP), ROP combined with simultaneous polycondensation (ROPPOC), various catalysts with unknown polymerization mechanisms, and polycondensation of lactic acid. Since the toxicity of tin salts and compounds is a matter of concern and frequently mentioned in numerous publications, the first section deals with facts instead of myths about the toxicity of tin salts and compounds. KW - Polylactide KW - MALDI-TOF MS KW - Tin catalysts PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545050 DO - https://doi.org/10.1039/d2py00092j SP - 1 EP - 30 PB - Royal Society for Chemistry AN - OPUS4-54505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate JF - Chemistry - A European Journal N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -