TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Bressler, I. T1 - Copolymer composition determined by LC-MALDI-TOF MS coupling and 'MassChrom2D' data analysis N2 - The MALDI-TOF MS analysis of copolymers very often results in complex spectra. A chromatographic separation/fractionation prior to the MALDI investigation can be advantageous since the MALDI mass spectra of fractions very often reveal well-resolved peaks of distinguishable copolymer series. For this purpose, different modes of chromatography have been applied. Chromatographic runs were transferred to MALDI targets utilizing a combined air/electrospray deposition device. Using the new MassChrom2D software, fraction-dependent 2D copolymer compositions plots were obtained providing additional information on the chromatographic mode, and enabling fast modification of conditions to increase separation. KW - Copolymer composition KW - Chromatography KW - Coupling KW - MALDI-TOF mass spectrometry PY - 2012 U6 - https://doi.org/10.1002/macp.201200169 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2404 EP - 2411 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, C. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Barner-Kowollik, C. T1 - In-depth LCCC-(GELC)-SEC characterization of ABA block copolymers generated by a mechanistic switch from RAFT to ROP N2 - A recently introduced procedure involving a mechanistic switch from reversible addition–fragmentation chain transfer (RAFT) polymerization to ring-opening polymerization (ROP) to form diblock copolymers is applied to synthesize ABA (star) block copolymers. The synthetic steps include the polymerization of styrene with R-group designed RAFT agents, the transformation of the thiocarbonyl thio end groups into OH functionalities, and their subsequent chain extension by ROP. The obtained linear ABA poly(ε-caprolactone)-block-poly(styrene)-block-poly(ε-caprolactone) (pCL-b-pS-b-pCL) (12 500 g mol–1 ≤ Mn ≤ 33 000 g mol–1) and the star-shaped poly(styrene)-block-poly(ε-caprolactone) (Mn = 36 000 g mol–1) copolymers were analyzed by size exclusion chromatography (SEC), nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The focus of the current study is on the detailed characterization of the ABA (star) block polymers via multidimensional chromatographic techniques specifically high performance liquid chromatography coupled to size exclusion chromatography (HPLC-SEC). In particular, we demonstrate the first time separation of poly(ε-caprolactone) (pCL) homopolymer and additionally poly(styrene) (pS) from the ABA poly(ε-caprolactone)-b-poly(styrene)-b-poly(ε-caprolactone) and star-shaped poly(styrene)-b-poly(ε-caprolactone) block copolymer utilizing critical conditions (CC) for pCL with concomitant gradient elution liquid chromatography (GELC). KW - Two-dimensional-liquid chromatography (2D-LC) KW - Liquid chromatography under critical conditions (LCCC) KW - Gradient elution liquid chromatography (GELC) KW - Soft ionization mass spectrometry (ESI, MALDI) KW - Reversible addition fragmentation chain transfer (RAFT) KW - Ring opening polymerization (ROP) PY - 2012 U6 - https://doi.org/10.1021/ma2022452 SN - 0024-9297 SN - 1520-5835 VL - 45 IS - 1 SP - 87 EP - 99 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hoskins, Jessica A1 - Falkenhagen, Jana A1 - Weidner, Steffen ED - Udomkichdecha, W. ED - Böllinghaus, T. ED - Manonukul, A. ED - Lexow, J. T1 - Characterization of randomly branched polymers utilizing liquid chromatography and mass spectrometry N2 - Branching in polymers is an important way to modify the materials properties, however the characterization of random branching in polymeric materials is a challenge in polymer analysis. In this work, liquid adsorption chromatography methods are developed for a commercially available hyperbranched polyester (Boltorn™). This Chromatographie techniques was then coupled to offline MALDI-TOF MS analysis, a first in the analysis of randomly branched polymers. The coupling of these two techniques provides superior MALDI-TOF spectra, enabling the easy identification of structural subdistributons based on theoretical molecular weight. Detailed analysis of the MALDI-TOF spectra shows that these Chromatographie conditions separate cyclic Boltorn polymers (with no core molecule) from non-cyclic polymers (with core molecule), and these are the only two architectures observed. MALDI MS also confirms that the Chromatographie Separation mode is adsorption, but further analysis is needed to determine if there is a Separation by degree of branching. KW - Hyperbranched polyesters KW - Polymer mass spectrometry KW - Polymer chromatography KW - Liquid adsorption chromatography KW - MALDI-TOF MS KW - Carbon capture KW - Climate change KW - Lubricant KW - Micro manufacturing KW - Multiphysics simulations KW - WMRIF PY - 2014 SN - 978-3-319-11339-5 SN - 978-3-319-11340-1 SP - 1 EP - 10 PB - Springer AN - OPUS4-32519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, J.L. A1 - Lutomski, C.A. A1 - El-Baba, T.J. A1 - Siriwardena-Mahanama, B.N. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Allen, M. J. A1 - Trimpin, S. T1 - Matrix-assisted ionization-ion mobility spectrometry-mass spectrometry: Selective analysis of a europium-PEG complex in a crude mixture N2 - The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed. KW - Matrix-assisted ionization ion mobility spectrometry mass spectrometry KW - Europium KW - Poly(ethylene glycol) KW - Size-exclusion chromatography KW - Liquid chromatography at critical conditions KW - Electrospray ionization KW - Matrix-assisted laser desorption/ionization KW - Inductively coupled plasma-mass spectrometry KW - ESI KW - MALDI KW - SEC PY - 2015 U6 - https://doi.org/10.1007/s13361-015-1233-8 SN - 1044-0305 VL - 26 IS - 12 SP - 2086 EP - 2095 PB - Elsevier CY - New York, NY AN - OPUS4-35283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 U6 - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baumann, Maria A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Wold, C. A1 - Uliyanchenko, E. T1 - Characterization of copolymers of polycarbonate and polydimethylsiloxane by 2D chromatographic separation, MALDI-TOF mass spectrometry, and FTIR spectroscopy N2 - The structure and composition of polycarbonate polydimethylsiloxane copolymer (PC-co-PDMS) was investigated by applying various analytical approaches including chromatographic separation methods, spectrometric, and spectroscopic detection techniques. In particular, size exclusion chromatography (SEC) and liquid adsorption chromatography operating at different conditions (e.g. using gradient solvent systems) were used to achieve separations according to molar mass and functionality distribution. The coupling of both techniques resulted in fingerprint two-dimensional plots, which could be used to easily compare different copolymer batches. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied for structural investigations. The different ionization behavior of both comonomers, however, strongly limited the applicability of this technique. In contrast to that, Fourier-transform Infrared (FTIR) spectroscopy could be used to quantify the amount of PDMS in the copolymer at different points in the chromatogram. The resulting methodology was capable of distinguishing PC-co-PDMS copolymer from PC homopolymer chains present in the material. KW - FTIR KW - Liquid chromatography KW - Mass spectrometry KW - Gradient elution KW - Polycarbonate-co-dimethylsiloxane copolymer PY - 2020 U6 - https://doi.org/10.1080/1023666X.2020.1820170 VL - 25 IS - 7 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-51369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Reversible Polycondensations outside the Jacobson-Stockmayer Theory and a New Concept of Reversible Polycondensations N2 - L-Lactide was polymerized with tin(II)acetate, tin(II)2-ethyl hexanoate, diphenyltin dichloride and dibutyltin bis(pentafluorophenoxide) at 130 °C in bulk. When an alcohol was added as initiator, linear chains free of cycles were formed having a degree of polymerization (DP) according to the lactide/initiator (LA/In) ratio. Analogous polymerizations in the absence of an initiator yielded high molar mass cyclic polylactides. Quite similar results were obtained when ε-caprolactone was polymerized with or without initiator. Several transesterification experiments were conducted at 130 °C, either with polylactide or poly(ε-caprolactone) indicating that several transesterification mechanisms are operating under conditions that do not include formation of cycles by back-biting. Furthermore, reversible polycondensations (revPOCs) with low or moderate conversions were found that did not involve any kind of cyclization. Therefore, These results demonstrate the existence of revPOCs, which do neither obey the theory of irreversible polycondensation as defined by Flory nor the hypothesis of revPOCs as defined by Jacobson and Stockmayer. A new concept encompassing any kind of revPOCs is formulated in the form of a “polycondensation triangle”. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530831 VL - 12 IS - 35 SP - 5003 EP - 5016 PB - Royal Society for Chemistry AN - OPUS4-53083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed and alcohol-initiated ROPs of L-lactide – About the influence of initiators on chemical reactions in the melt and the solid state N2 - SnOct2 (Sn(II) 2-ethylhexanoate) catalyzed ROPs of L-lactide were performed in bulk with eight different alcohols as initiators. The time was varied between 1 h and 24 h for all initiators. For two initiators the temperature was also lowered to 115 ◦C. Even-numbered chains were predominantly formed in all polymerizations at short times, but the rate of transesterification (e.g. even/odd equilibration) and the molecular weight distribution were found to depend significantly on the nature of the initiator. Observed transesterification reactions also continued in solid poly (L-lactide), and with the most active initiator, almost total equilibration was achieved even at 130 ◦C. This means that all chains including those of the crystallites were involved in transesterification reactions proceeding across the flat surfaces of the crystallites. The more or less equilibrated crystalline polylactides were characterized by DSC and SAXS measurements with regard to their melting temperature (Tm), crystallinity and crystal thickness. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Catalysts KW - SAXS PY - 2021 U6 - https://doi.org/10.1016/j.eurpolymj.2021.110508 VL - 153 SP - 110508 PB - Elsevier Ltd. AN - OPUS4-52633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - The role of transesterifications in reversible polycondensations and a reinvestigation of the Jacobson-Beckmann-Stockmayer experiments N2 - The polycondensations of adipic acid and 1,10-decanediol catalyzed by toluene sulfonic acid (TSA) were reinvestigated using MALDI TOF mass spectrometry and NMR spectroscopy. Unexpected reactions of TSA were detected along with incomplete conversion of the monomers. Furthermore, transesterification reactions of end-capped poly(1,10-decanediol adipate) and end-capped poly(ε-caprolactone) catalyzed by TSA were studied. Despite the quite different (ionic) reaction mechanisms, it was found that for polycondensations performed in bulk intermolecular transesterification is more efficient than the intramolecular “back-biting”; this scenario was not considered in the Jacobson–Stockmayer theory of reversible polycondensations. These results also confirm that the Jacobson–Stockmayer explanation of reversible polycondensations solely on the basis of ring chain equilibration is not only devoid of any experimental evidence, but also in contradiction to the results elaborated in this work. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543402 SN - 1759-9962 SP - 1 EP - 9 PB - RSC Publ. CY - Cambridge AN - OPUS4-54340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-592934 SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -