TY - JOUR A1 - Krause, Benjamin Christoph A1 - Seifert, Stephan A1 - Panne, Ulrich A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Matrix-assisted laser desorption/ionization mass spectrometric investigation of pollen and their classification by multivariate statistics JF - Rapid communications in mass spectrometry N2 - RATIONALE A fast and reliable online identification of pollen is not yet available. The identification of pollen is based mainly on the evaluation of morphological data obtained by microscopic methods. METHODS Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) was applied to the analysis of extracts and milled pollen samples. The obtained MALDI data were explored for characteristic peak patterns which could be subjected to a multivariate statistical analysis. RESULTS Two sample preparation methods are presented, which require only minimal or no chemical extraction of the pollen. MALDI pollen spectra could be recorded showing various peak patterns. A multivariate statistics approach allowed the classification of pollen into clusters indicating similarities and differences between various species. CONCLUSIONS These results demonstrate the potential and the reliability of MALDI-TOF MS for the identification and, in combination with multivariate statistics, also for the classification of pollen. KW - MALDI TOF mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2012 DO - https://doi.org/10.1002/rcm.6202 SN - 0951-4198 SN - 1097-0231 VL - 26 IS - 9 SP - 1032 EP - 1038 PB - Wiley CY - Chichester AN - OPUS4-25648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Weidner, Steffen A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Taxonomic relationship of pollen from MALDI TOF MS data using multivariate statistics JF - Rapid communications in mass spectrometry N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been suggested as a promising tool for the investigation of pollen, but the usefulness of this approach for classification and identification of pollen species has to be proven by an application to samples of varying taxonomic relations. KW - MALDI mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2015 DO - https://doi.org/10.1002/rcm.7207 SN - 0951-4198 SN - 1097-0231 VL - 29 SP - 1145 EP - 1154 PB - Wiley CY - Chichester AN - OPUS4-35296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the Preparation of Pollen Grains for MALDI-TOF MS Classification JF - International Journal of Molecular Sciences N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - PCA KW - MALDI-TOF MS KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392885 UR - http://www.mdpi.com/1422-0067/18/3/543/ DO - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 VL - 18 IS - 3 SP - 543 EP - 554 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-39288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition JF - Scientific Reports N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465294 DO - https://doi.org/10.1038/s41598-018-34800-1 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, S. A1 - Zimmermann, B. A1 - Tafintseva, V. A1 - Seifert, S. A1 - Bagcioglu, M. A1 - Ohlson, M. A1 - Weidner, Steffen A1 - Fjellheim, S. A1 - Kohler, A. A1 - Kneipp, Janina T1 - Combining Chemical Information From Grass Pollen in Multimodal Characterization JF - Frontiers in Plant Science N2 - The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters. KW - Pollen KW - MALDI-TOF MS KW - FTIR KW - Raman KW - Multivariate analyses PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504822 DO - https://doi.org/10.3389/fpls.2019.01788 VL - 10 SP - 1788 AN - OPUS4-50482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -