TY - JOUR A1 - Kühn, Gerhard A1 - Weidner, Steffen A1 - Decker, Renate A1 - Ghode, Archana A1 - Friedrich, Jörg Florian T1 - Selective surface functionalization of polyolefins by plasma treatment followed by chemical reduction N2 - Polymer surfaces can be finished with functional groups upon exposure to a plasma. Species of the plasma gas are attached at surface carbon atoms, forming functional groups of different composition. To produce a modified polymer surface with a high density and homogeneity of hydroxyl groups only, the oxygen-plasma-formed oxygen functional groups were chemically reduced by diborane and LiAlH4 with yields of 10 to 11 OH groups per 100 carbon atoms in the 3 to 5 nm near-surface layer as detected by X-ray photoelectron spectroscopy (XPS). The identification of hydroxyl groups was performed by means of attenuated total reflectance–Fourier transform infrared spectroscopy and XPS. KW - Attenuated total reflectance-Fourier transorm infrared spectroscopy KW - Chemical reduction of functional groups KW - Plasma modification KW - X-ray photoelectron spectroscopy PY - 1999 U6 - https://doi.org/10.1016/S0257-8972(99)00232-7 SN - 0257-8972 VL - 116-119 SP - 796 EP - 801 PB - Elsevier Science CY - Lausanne AN - OPUS4-6983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kühn, Gerhard A1 - Decker, Renate A1 - Roessner, D. A1 - Friedrich, Jörg Florian T1 - Influence of Plasma Treatment on the Molar Mass of Poly(ethylene terephthalate) Investigated by Different Chromatographic and Spectroscopic Methods N2 - The influence of different types of low and atmospheric pressure plasma on poly(ethylene terephthalate) (PET) has been studied in terms of changes in molar mass and molar mass distribution. Apart from a variation of plasma gases (oxygen, helium) different types of plasma (microwave, radio frequency, corona discharge) were used for the plasma surface modification. The changes in molar mass and types of functional end groups of lower molar mass products were investigated by means of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOFMS), whereas the high-molar mass fraction was analyzed by means of size-exclusion chromatography (SEC). The formation of crosslinked products during exposure to a helium plasma, which emits preponderately energy-rich and intense ultraviolet radiation, was proved by means of thermal field-flow fractionation (ThFFF). This method combined with a multiangle laser light scattering (MALLS) detector allows detection of weakly crosslinked polymers and microgels. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1639-1648, 1998 KW - Poly(ethylene terephthalate) KW - PET KW - Plasma PY - 1998 UR - http://www3.interscience.wiley.com/cgi-bin/abstract/36482/ABSTRACT U6 - https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1639::AID-POLA17>3.0.CO;2-H SN - 0360-6376 SN - 0887-624X VL - 36 IS - 10 SP - 1639 EP - 1648 PB - Wiley CY - Hoboken, NJ AN - OPUS4-6989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kühn, Gerhard A1 - Just, Ulrich A1 - Werthmann, Barbara A1 - Decker, Renate A1 - Schwarz, Bärbel A1 - Borowski, Renate T1 - MALDI/MS - A New Technique in Characterizing Chemical Heterogeneity of Degradation Products of Poly(Ethylene Terephthalate)s T2 - International GPC Symposium '96 CY - San Diego, CA, USA DA - 1996-09-08 PY - 1996 SP - 632 EP - 651 CY - Milford, Mass. AN - OPUS4-11905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kühn, Gerhard A1 - Werthmann, Barbara A1 - Schröder, Hartmut A1 - Just, Ulrich A1 - Borowski, Renate A1 - Decker, Renate A1 - Schwarz, Bärbel A1 - Schmücking, I. A1 - Seifert, Ingetraut T1 - A new approach of characterizing the hydrolytic degradation of poly(ethylene terephthalate) by MALDI-MS N2 - The hydrolytic degradation of technical poly(ethylene terephthalate) (PET) was investigated by means of different methods such as size-exclusion chromatography (SEC), viscometry, light-scattering, thin-layer chromatography, end-group titration, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The long-term degradation was simulated by exposing PET filament yarns to aqueous neutral conditions at 90°C for up to 18 weeks. By means of MALDI-MS and thin-layer chromatography, the formation of different oligomers was obtained during polymer degradation. As expected, an ester scission process was found generating acid terminated oligomers (H-[GT]m-OH) and T-[GT]m-OH and ethylene glycol terminated oligomers (H-[GT]m-G), where G is an ethylene glycol unit and T is a terephthalic acid unit. Additionally, the scission of the ester bonds during the chemical treatment led to a strong decrease in the number of cyclic oligomers ([GT]m). The occurrence of di-acid terminated species demonstrated a high degree of degradation. PY - 1997 U6 - https://doi.org/10.1002/(SICI)1099-0518(199708)35:11<2183::AID-POLA9>3.0.CO;2-Z SN - 0360-6376 SN - 0887-624X VL - 35 IS - 11 SP - 2183 EP - 2192 PB - Wiley CY - Hoboken, NJ AN - OPUS4-11357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -