TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Imaging mass spectrometry for examining localization of polymeric composition in matrix-assisted laser desorption/ionization samples N2 - The localization of polymeric composition in samples prepared for matrix-assisted laser desorption/ionization (MALDI) analysis has been investigated by imaging mass spectrometry. Various matrices and solvents were used for sample spot preparation of a polybutyleneglycol (PBG 1000). It was shown that in visibly homogeneous spots, prepared using the dried droplet method, separation between matrix and polymer takes place. Moreover, using -cyano-4-hydroxycinnamic acid (CCA) as matrix and methanol as solvent molecular mass separation of the polymer homologues in the spots was detectable. In contrast to manually spotted samples, dry spray deposition results in homogeneous layers showing no separation effects. KW - Imaging KW - MALDI TOF Massenspektrometrie KW - Polymere PY - 2009 DO - https://doi.org/10.1002/rcm.3919 SN - 0951-4198 SN - 1097-0231 VL - 23 IS - 5 SP - 653 EP - 660 PB - Wiley CY - Chichester AN - OPUS4-19622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Schulze, Rolf-Dieter T1 - Sample spot heterogeneity investigated by MALDI-imaging mass spectrometry T2 - 18th International Mass Spectrometry Conference CY - Bremen, Germany DA - 2009-08-30 PY - 2009 AN - OPUS4-19989 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenhagen, Jana A1 - Weidner, Steffen T1 - Determination of critical conditions of adsorption for chromatography of polymers N2 - Liquid chromatography (LC) at critical conditions of adsorption was used to separate various poly(ethylene oxides), poly(propylene oxides) and their copolymers. For the first time, the determination of the critical conditions by means of Ultra Performance Liquid Chromatography (UPLC) coupled to Electrospray Ionization Time-of-flight Mass Spectrometry (ESI-TOF MS) is reported. In contrast to established, mostly laborious routines to find suitable chromatographic separation conditions, this coupling enables a very fast adjustment of parameters. Similar to LC Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (LC/MALDI MS) coupling, a two-dimensional analysis of homo- and copolymers regarding its functionality type and molecular weight distribution, as well as copolymer composition, can be performed simultaneously. Furthermore, there is no need for using polymer standards for the determination of critical conditions or Size Exclusion Chromatography calibration. KW - Polymere KW - UPLC KW - ESI-Massenspektrometrie KW - Kopplung PY - 2009 DO - https://doi.org/10.1021/ac8019784 SN - 0003-2700 SN - 1520-6882 VL - 81 IS - 1 SP - 282 EP - 287 PB - American Chemical Society CY - Washington, DC AN - OPUS4-19619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - LC-MALDI-TOF imaging MS: a new approach in combining chromatography and mass spectrometry of copolymers N2 - A new approach that utilizes MALDI-TOF imaging mass spectrometry as a new detector for polymer chromatography is presented. For the first time, the individual retention behavior of single structural units of polyethylene oxide (PEO)/polypropylene oxide (PPO) copolymers and changes of the copolymer composition could be monitored. Composition specific calibration curves could be easily obtained by displaying the copolymer ion intensity data. This approach provides completely new insights in the chromatographic principle of copolymer separation and could be used to easily modify and adapt conditions for separation. In combination with electrospray deposition, homogeneous sample/matrix traces of surprisingly high spatial resolution could be obtained. KW - MALDI KW - Massenspektrometrie KW - Imaging KW - Chromatographie KW - Polymere PY - 2011 DO - https://doi.org/10.1021/ac202380n SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 23 SP - 9153 EP - 9158 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, C. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Barner-Kowollik, C. T1 - In-depth LCCC-(GELC)-SEC characterization of ABA block copolymers generated by a mechanistic switch from RAFT to ROP N2 - A recently introduced procedure involving a mechanistic switch from reversible addition–fragmentation chain transfer (RAFT) polymerization to ring-opening polymerization (ROP) to form diblock copolymers is applied to synthesize ABA (star) block copolymers. The synthetic steps include the polymerization of styrene with R-group designed RAFT agents, the transformation of the thiocarbonyl thio end groups into OH functionalities, and their subsequent chain extension by ROP. The obtained linear ABA poly(ε-caprolactone)-block-poly(styrene)-block-poly(ε-caprolactone) (pCL-b-pS-b-pCL) (12 500 g mol–1 ≤ Mn ≤ 33 000 g mol–1) and the star-shaped poly(styrene)-block-poly(ε-caprolactone) (Mn = 36 000 g mol–1) copolymers were analyzed by size exclusion chromatography (SEC), nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The focus of the current study is on the detailed characterization of the ABA (star) block polymers via multidimensional chromatographic techniques specifically high performance liquid chromatography coupled to size exclusion chromatography (HPLC-SEC). In particular, we demonstrate the first time separation of poly(ε-caprolactone) (pCL) homopolymer and additionally poly(styrene) (pS) from the ABA poly(ε-caprolactone)-b-poly(styrene)-b-poly(ε-caprolactone) and star-shaped poly(styrene)-b-poly(ε-caprolactone) block copolymer utilizing critical conditions (CC) for pCL with concomitant gradient elution liquid chromatography (GELC). KW - Two-dimensional-liquid chromatography (2D-LC) KW - Liquid chromatography under critical conditions (LCCC) KW - Gradient elution liquid chromatography (GELC) KW - Soft ionization mass spectrometry (ESI, MALDI) KW - Reversible addition fragmentation chain transfer (RAFT) KW - Ring opening polymerization (ROP) PY - 2012 DO - https://doi.org/10.1021/ma2022452 SN - 0024-9297 SN - 1520-5835 VL - 45 IS - 1 SP - 87 EP - 99 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Hyphenated coupling methods for polymer characterization and identification T2 - Dutch Polymer Workshop CY - Jena, Germany DA - 2013-12-09 PY - 2013 AN - OPUS4-30268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - The role of transesterifications in reversible polycondensations and a reinvestigation of the Jacobson-Beckmann-Stockmayer experiments N2 - The polycondensations of adipic acid and 1,10-decanediol catalyzed by toluene sulfonic acid (TSA) were reinvestigated using MALDI TOF mass spectrometry and NMR spectroscopy. Unexpected reactions of TSA were detected along with incomplete conversion of the monomers. Furthermore, transesterification reactions of end-capped poly(1,10-decanediol adipate) and end-capped poly(ε-caprolactone) catalyzed by TSA were studied. Despite the quite different (ionic) reaction mechanisms, it was found that for polycondensations performed in bulk intermolecular transesterification is more efficient than the intramolecular “back-biting”; this scenario was not considered in the Jacobson–Stockmayer theory of reversible polycondensations. These results also confirm that the Jacobson–Stockmayer explanation of reversible polycondensations solely on the basis of ring chain equilibration is not only devoid of any experimental evidence, but also in contradiction to the results elaborated in this work. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543402 DO - https://doi.org/10.1039/d1py01679b SN - 1759-9962 SP - 1 EP - 9 PB - RSC Publ. CY - Cambridge AN - OPUS4-54340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fandrich, Nick A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Staal, B. A1 - Thünemann, Andreas A1 - Laschewsky, A. T1 - Characterization of new amphiphilic block copolymers of N-vinylpyrrolidone and vinyl acetate, 2 - chromatographic separation and analysis by MALDI-TOF and FT-IR coupling N2 - PVP-block-PVAc block copolymers were synthesized by controlled radical polymerization applying a RAFT/MADIX system and were investigated by HPLC and by coupling of chromatography to FT-IR spectroscopy and MALDI-TOF MS. Chromatographic methods (LACCC and gradient techniques) were developed that allowed a separation of block copolymers according to their repeating units. The results of the spectroscopic and spectrometric analysis clearly showed transfer between radicals and process solvent. With the use of hyphenated techniques differences between main and side products were detected. In agreement with previously published results, obtained by NMR, SEC, static light scattering and MALDI-TOF MS, our data proved a non-ideal RAFT polymerization. KW - Amphiphiles KW - Block copolymers KW - Liquid chromatography KW - MALDI KW - Reversible addition fragmentation chain transfer (RAFT) KW - Liquid adsorption chromatography at critical conditions KW - Gradient chromatography KW - MALDI-TOF mass spectrometry KW - Hyphenated techniques KW - Mechanism of polymerization PY - 2010 DO - https://doi.org/10.1002/macp.201000044 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 15 SP - 1678 EP - 1688 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Maltsev, Sergey A1 - Sauerland, V. A1 - Rinken, M. T1 - A novel software tool for copolymer characterization by coupling of liquid chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry N2 - The results of copolymer characterization by coupling of chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques and subsequent calculation of copolymer composition using a novel software tool MassChrom2D are presented. For high-resolution mass analysis copolymer samples were fractionated by means of liquid adsorption chromatography (LAC). These fractions were investigated off-line by MALDI-TOF MS. Various mono-n-butyl ethers of polyethylene oxide-polypropylene oxide copolymers (PEO-co-PPO) were investigated. As well as the copolymer composition presented in two-dimensional plots, the applied approach can give additional hints on specific structure-dependent separation conditions in chromatography. KW - Copolymeranalytik KW - MALDI KW - Software KW - MS/MS KW - Kopplungsmethoden PY - 2007 DO - https://doi.org/10.1002/rcm.3146 SN - 0951-4198 SN - 1097-0231 VL - 21 IS - 16 SP - 2750 EP - 2758 PB - Wiley CY - Chichester AN - OPUS4-17723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Krüger, Rita A1 - Falkenhagen, Jana A1 - Friedrich, Jörg F. A1 - Gerstung, Vanessa A1 - Just, Ulrich A1 - Krüger, Ralph-Peter A1 - Much, Helmut A1 - Schulz, Günter T1 - Neue Wege zur analytischen Charakterisierung komplexer Polymersysteme T2 - Berliner Polymerentage 2000 CY - Berlin, Germany DA - 2000-10-09 PY - 2000 AN - OPUS4-11134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Krüger, Ralph-Peter A1 - Just, Ulrich A1 - Wittke, Wolfgang T1 - LC-MALDI Coupling for "quantitative" Analysis of Polymers T2 - NIST CY - Gaithersburg, MD, USA DA - 2002-11-06 PY - 2002 AN - OPUS4-11138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Knop, K. A1 - Thünemann, Andreas T1 - Structure and end-group analysis of complex hexanediol-neopentylglycol-adipic acid copolyesters by matrix-assisted laser desorption/ionization collision-induced dissociation tandem mass spectrometry N2 - Sequences and end groups of complex copolyesters were determined by fragmentation analysis by means of matrix-assisted laser desorption/ionization collision-induced dissociation tandem mass spectrometry (MALDI CID MS/MS). The complexity of the crude copolyester mixture was reduced by a chromatographic separation followed by a MALDI time-of-flight (TOF) investigation of fractions. Due to overlapping compositional and end-group information a clear assignment of end groups was very difficult. However, the fragmentation of suitable precursor ions resulted in typical fragment ion patterns and, therefore, enabled a fast and unambiguous determination of the end groups and composition of this important class of polymers. KW - Fragmentierung KW - MALDI Massenspektrometrie KW - Polymere KW - MS/MS PY - 2009 DO - https://doi.org/10.1002/rcm.4191 SN - 0951-4198 SN - 1097-0231 VL - 23 IS - 17 SP - 2768 EP - 2774 PB - Wiley CY - Chichester AN - OPUS4-20929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fandrich, Nick A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Pfeifer, Dietmar A1 - Staal, B. A1 - Thünemann, Andreas A1 - Laschewsky, A. T1 - Characterization of new amphiphilic block copolymers of N-vinyl pyrrolidone and vinyl acetate, 1 - analysis of copolymer composition, end groups, molar masses and molar mass distributions N2 - New amphiphilic block copolymers consisting of N-vinyl pyrrolidone and vinyl acetate were synthesized via controlled radical polymerization using a reversible addition/fragmentation chain transfer (RAFT)/macromolecular design via the interchange of xanthates (MADIX) system. The synthesis was carried out in 1,4-dioxane as process solvent. In order to get conclusions on the mechanism of the polymerization the molecular structure of formed copolymers was analysed by means of different analytical techniques. 13C NMR spectroscopy was used for the determination of the monomer ratios. End groups were analysed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This technique was also used to determine possible fragmentations of the RAFT end groups. By means of a combination of size exclusion chromatography, 13C NMR and static light scattering molar mass distributions and absolute molar masses could be analysed. The results clearly show a non-ideal RAFT mechanism. KW - Amphiphiles KW - Block copolymers KW - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) KW - N-vinyl pyrrolidone KW - Reversible addition/fragmentation chain transfer (RAFT) PY - 2010 DO - https://doi.org/10.1002/macp.200900466 SN - 1022-1352 SN - 1521-3935 VL - 211 IS - 8 SP - 869 EP - 878 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-21905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gruendling, T. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Barner-Kowollik, C. T1 - Mass spectrometry in polymer chemistry: a state-of-the-art up-date N2 - Two decades after the introduction of matrix assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), soft ionization mass spectrometry represents a powerful toolset for the structural investigation of synthetic polymers. The present review highlights the current state-of-the-art, covering the latest developments of novel techniques, enabling instrumentation as well as the important applications of soft ionization MS from the beginning of 2008. Special attention is paid to the role that soft ionization MS has played in the mechanistic investigation of radical polymerization processes since 2005. KW - Polymerization mechanisms KW - Mass spectrometry KW - LC-MS coupling PY - 2010 DO - https://doi.org/10.1039/b9py00347a SN - 1759-9954 SN - 1759-9962 VL - 1 IS - 5 SP - 599 EP - 617 AN - OPUS4-21906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - MALDI Imaging MS von Polymeren T2 - BRUKER-Anwendertreffen CY - Kassel, Germany DA - 2011-03-21 PY - 2011 AN - OPUS4-23603 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Sturm, Heinz A1 - Weidner, Steffen T1 - Breaking polymer chains by dynamic plowing lithography N2 - The adhesion of poly(methyl methacrylate) (PMMA) and polystyrene (PS) films, whose surface has been previously structured by dynamic plowing lithography (DPL), has been measured by means of force–displacement curves. The different adhesion of modified and unmodified PS leads to the assumption that polymer chains are broken during DPL. After measuring the energy dissipated by the tip during DPL, in order to check that the transferred energy is sufficient to break covalent bonds, the polymer chain scission caused by the lithographic process has been definitely confirmed by size exclusion chromatography measurements of the lithographed films. KW - AFM KW - Nanolithography KW - Chain scission PY - 2002 DO - https://doi.org/10.1016/S0032-3861(02)00285-9 SN - 0032-3861 SN - 1873-2291 VL - 43 IS - 16 SP - 4461 EP - 4466 PB - Springer CY - Berlin AN - OPUS4-1608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Sturm, Heinz A1 - Vogel, Lydia T1 - Untersuchung von plasmamodifizierten Polymeren mit speziellen Analysenmethoden T2 - Abteilungsseminar, BAM, Abt. VI CY - Berlin, Germany DA - 1996-05-02 PY - 1996 AN - OPUS4-6411 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -