TY - JOUR A1 - Meyer, A. A1 - Weidner, Steffen A1 - Kricheldorf, H. T1 - Stereocomplexation of cyclic polylactides with each other and with linear poly(L-lactide)s N2 - Two kinds of cyclic poly(D- and L-lactide)s were synthesized, namely CI labeled samples mainly consisting of even-numbered cycles with low dispersity and CII, CIII or CIV-labeled ones consisting of equal amounts of even and odd-numbered cycles with high dispersity and igher molecular weights (Mw up to 300 000). Furthermore, linear poly L-lactide)s were prepared by initiation with ethanol and in both series the molecular weight was varied. The formation of stereocomplexes from cyclic poly(D-lactide)s and all kinds of poly L-lactide)s was performed in dichloromethane/toluene mixtures. The stereocomplexes crystallized from the reaction mixture were characterized in the virgin state and after annealing at 205 °C. Stereocomplexes free of stereohomopolymers with crystallinities up to 80% were obtained from all experiments in yields ranging from 60 to 80%. Despite the high annealing temperature (maintained for 1 h), little transesterification was observed and the crystallinity slightly increased. KW - Polylactide KW - MALDI-TOF MS KW - Stereocomplex KW - Cyclic PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496693 DO - https://doi.org/10.1039/c9py01236b VL - 10 SP - 6191 EP - 6199 PB - Royal Society for Chemistry AN - OPUS4-49669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. A1 - Scheliga, F. T1 - Ring-expansion copolymerization of L-lactide and glycolide N2 - 1:1 Copolymerizations of glycolide (GL) and L-lactide (LA) is performed in bulk at 100°C and at 160°C with four cyclic tin catalysts. The resulting copolyesters are characterized by SEC measurements, 1H and 13C NMR spectroscopy and by MALDI TOF mass spectrometry. At 160°C and longer reaction time (22 h) nearly complete conversion of both monomers is achieved, and cyclic copolymers with nearly random sequences are formed. At shorter times (0.5-3.0 h, depending on catalyst) the conversion of LA is incomplete, and only cyclics having even numbers of lactyl units are obtained. At 100°C at 22 h again cycles mainly consisting of even numbered lactyl units are formed, but with even and odd numbers of glycolyl units. Copolymerization of lactide at 160°C with small amounts of GL show that formation of high Tm crystallites (Tm > 190°C) is hindered even when only > 2% of GL is added. For polyglycolide containing a smaller amount of lactide complete solubility in hexafluoroisopropanol is only observed around and above 20 mol% of lactide. KW - Ring-expansion polymerization KW - Copolymerization KW - MALDI-TOF MS KW - L-lactide KW - Glycolide KW - Crystallization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520270 DO - https://doi.org/10.1002/macp.202000307 SN - 1022-1352 VL - 22 IS - 3 SP - 307 PB - WileyVCH AN - OPUS4-52027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molecular weight poly(l-lactide) via ring-opening polymerization with bismuth subsalicylate-The role of cocatalysts N2 - The catalytic potential of bismuth subsalicylate (BiSub), a commercial drug, for ring-opening polymerization (ROP) of L-lactide was explored by variation of co-catalyst and polymerization time. Various monofunctional phenols or carboxylic acids, aromatic ortho-hydroxy acids and diphenols were examined as potential co-catalysts. 2,2´-Dihydroxybiphenyl proved to be the most successful co-catalyst yielding weight average molecular weights (uncorrected Mw values up to 185 000) after optimization of reaction time and temperature. Prolonged heating (>1-2h) depending on catalyst concentration) caused thermal degradation. In polymerization experiments with various commercial Bi(III) salts a better alternative to BiSub was not found. By means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry a couple of unusual and unexpected transesterification reactions were discovered. Finally, the effectiveness of several antioxidants and potential catalyst poisons was explored, and triphenylphosphine was found to be an effective catalyst poison. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Bismuth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519513 DO - https://doi.org/10.1002/app.50394 SN - 0021-8995 VL - 138 IS - 19 SP - 50394 PB - Wiley AN - OPUS4-51951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - High Tm linear poly(L-lactide)s prepared via alcohol-initiated ROPs of L-lactide N2 - Alcohol-initiated ROPs of L-lactide were performed in bulk at 160 °C for 72 h with variation of the catalyst or with variation of the initiator (aliphatic alcohols). Spontaneous crystallization was only observed when cyclic Sn(II) compounds were used as a catalyst. Regardless of initiator, high melting crystallites with melting temperatures (Tm) of 189–193 °C were obtained in almost all experiments with Sn(II) 2,2′-dioxybiphenyl (SnBiph) as catalyst, even when the time was shortened to 24 h. These HTm poly(lactide)s represent the thermodynamically most stable form of poly(L-lactide). Regardless of the reaction conditions, such high melting crystallites were never obtained when Sn(II) 2-ethylhexanoate (SnOct2) was used as catalyst. SAXS measurements evidenced that formation of HTm poly(L-lactide) involves growth of the crystallite thickness, but chemical modification of the crystallite surface (smoothing) seems to be of greater importance. A hypothesis, why the “surface smoothing” is more effective for crystallites of linear chains than for crystallites composed of cycles is discussed. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524330 DO - https://doi.org/10.1039/d1ra01990b VL - 11 IS - 23 SP - 14093 EP - 14102 PB - Royal Society of Chemistry AN - OPUS4-52433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grabicki, N. A1 - Nguyen, K. T. G. A1 - Weidner, Steffen A1 - Dumele, O. T1 - Confined Spaces in [n]Cyclo-2,7-pyrenylenes N2 - A set of strained aromatic macrocycles based on [n]cyclo2,7-(4,5,9,10-tetrahydro)pyrenylenes is presented with size dependent photophysical properties. The K-region of pyrene was functionalized with ethylene glycol groups to decorate the outer rim and thereby confine the space inside the macrocycle. This confined space is especially pronounced for n = 5, which leads to an internal binding of up to 8.0×104 M–1 between the ether-decorated [5]cyclo-2,7-pyrenylene and shape complementary crown ether–cation complexes. Both, the ether-decorated [n]cyclo-pyrenylenes as well as one of their host–guest complexes have been structurally characterized by single crystal X-ray analysis. In combination with computational methods the structural and thermodynamic reasons for the exceptionally strong binding have been elucidated. The presented rim confinement strategy makes cycloparaphenylenes an attractive supramolecular host family with a favorable, size-independent read-out signature and binding capabilities extending beyond fullerene guests. KW - Cycloparaphenylenes KW - Host–guest systems KW - Macrocycles KW - Molecular recognition KW - Supramolecular chemistry PY - 2021 DO - https://doi.org/10.1002/anie.202102809 SN - 1433-7851 VL - 60 IS - 27 SP - 1 EP - 7 PB - Wiley VCH AN - OPUS4-52517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - What does conversion mean in polymer science? N2 - The definition of the term “conversion” is discussed for a variety of polymer syntheses. It is demonstrated that in contrast to organic and inorganic chemistry several different definitions are needed in polymer science. The influence of increasing conversion on structure and topology of homo- and Copolymers is illustrated. Chain-growth polymerizations, such as radical polymerization or living anionic polymerizations of vinyl monomers, condensative chain polymerization, two and three-dimensional step-growth polymerizations, ring–ring or chain–chain equilibration and chemical modification of polymers are considered. KW - Polymers KW - Polymerization KW - Conversion KW - Polycondensation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523597 DO - https://doi.org/10.1002/macp.202100010 VL - 222 IS - 8 SP - 10 PB - Wiley VCH AN - OPUS4-52359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - The Role of Transesterification in SnOct 2 - Catalyzed Polymerizations of Lactides N2 - l-lactide or meso-lactide are polymerized either at 120 °C where the polymerization process of l-lactide is accompanied by crystallization, or at 180 °C where poly(l-lactide) remains in the molten state. Polymerizations at 120 °C initially yield even-numbered chains (with respect to lactic acid units) having relatively low dispersity, but the fraction of odd-numbered chains increases with time and the entire molecular weight distribution changes. Traces of cyclics are only formed after 7 d. Polymerizations at 180 °C yield equilibrium of even and odd-numbered chains from the beginning, but at low monomer/initiator ratios and short reaction times (<4 h) cyclics are again not formed. They appear at longer reaction times and entail higher dispersities. The results are discussed in terms of five different transesterification mechanisms. KW - Polylactides KW - MALDI KW - Transesterification KW - Sn catalysts PY - 2017 DO - https://doi.org/10.1002/macp.201600331 SN - 1022-1352 VL - 218 IS - 3 SP - 1600331 PB - Wiley AN - OPUS4-39753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Cyclic poly(l-lactide) via ring-expansion polymerization by means of dibutyltin 4-tert-butylcatecholate N2 - Five new catalysts are prepared from dibutyltin oxide and catechol (HCa), 2,3-dihydroxynaphthalene (NaCa), 4-tert-butyl catechol (BuCa), 4-cyano catechol (CyCa), and 4-benzoyl catechol (BzCa), but only BuCa gives useful results. When benzyl alcohol is used as an initiator, linear chains having benzyl ester end groups are formed in a slow polymerization process. In contrast to cyclic or noncyclic dibutyltin bisalkoxides, neat BuCa yields cyclic poly(l-lactide)s via a fast ring-expansion polymerization. Under certain conditions, a high-melting crystalline phase (Tm = 191 °C) is obtained. At 160 °C and short reaction times even-numbered cycles are slightly prevailing, but, surprisingly, at 120 °C, odd-numbered cycles are predominantly formed. These results definitely prove that a ring-expansion mechanism is operating. KW - Lactides KW - MALDI TOF MS KW - Morphology KW - Ring-opening polymerization KW - Tin catalysts PY - 2017 DO - https://doi.org/10.1002/macp.201700274 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 22 SP - 1700274, 1 EP - 1700274, 10 PB - Wiley VCH CY - Weinheim AN - OPUS4-43583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billing, Mark A1 - Gräfe, Christine A1 - Saal, Adrian A1 - Biehl, Philip A1 - Clement, Joachim A1 - Dutz, silvio A1 - Weidner, Steffen A1 - Schacher, Felix T1 - Zwitterionic Iron Oxide (γ-Fe2O3) Nanoparticles Based on P(2VP-grad-AA) Copolymers N2 - This study presents the synthesis and characterization of zwitterionic core–shell hybrid nanoparticles consisting of a core of iron oxide multicore nanoparticles (MCNPs, γ-Fe2O3) and a shell of sultonated poly(2-vinylpyridine-grad-acrylic acid) copolymers. The gradient copolymers are prepared by reversible addition fragmentation chain transfer polymerization of 2-vinylpyridine (2VP), followed by the addition of tert-butyl acrylate and subsequent hydrolysis. Grafting of P(2VP-grad-AA) onto MCNP results in P(2VP-grad-AA)@MCNP, followed by quaternization using 1,3-propanesultone-leading to P(2VPS-grad-AA)@MCNP with a zwitterionic shell. The resulting particles are characterized by transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis measurements, showing particle diameters of ≈70–90 nm and an overall content of the copolymer shell of ≈10%. Turbidity measurements indicate increased stability toward secondary aggregation after coating if compared to the pristine MCNP and additional cytotoxicity tests do not reveal any significant influence on cell viability. KW - Blockcopolymer KW - Controlled radical polymerization KW - Hybrid nanoparticles KW - Iron oxide nanoparticles KW - Sulfobetaines PY - 2017 DO - https://doi.org/10.1002/marc.201600637 SN - 1022-1336 SN - 1521-3927 VL - 38 IS - 4 SP - 1600637-1 EP - 1600637-8 PB - Wiley-VCH AN - OPUS4-39339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(L-lactide)s via ring-expansion polymerizations catalysed by 2,2-dibutyl-2- stanna-1,3-dithiolane N2 - L-Lactides were polymerized in bulk at 120 or 160 °C with cyclic dibutyltin catalysts derived from 1,2-dimercaptoethane or 2-mercaptoethanol. Only linear chains having one benzyl ester and one OH-end group were obtained when benzyl alcohol was added. When L-lactides were polymerized with neat dibutyl-2-stanna-1,3-dithiolane, exclusively cyclic polylactides were formed even at 120 °C. The temperature, time and monomer/catalyst ratio (M/C) were varied. These results are best explained by a combination of ring-expansion polymerization and ring-extrusion of cyclic oligo- or polylactides with Elimination of the cyclic catalyst. Neither syntheses of linear polylactides nor of cyclic lactides involved racemization up to 20 h at 160 °C. KW - Ring-expansion polymerization KW - MALDI KW - Polylactides PY - 2017 DO - https://doi.org/10.1039/C6PY02166B SN - 1759-9954 SN - 1759-9962 VL - 8 IS - 9 SP - 1589 EP - 1596 PB - Royal Society of Chemistry AN - OPUS4-39748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the Preparation of Pollen Grains for MALDI-TOF MS Classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - PCA KW - MALDI-TOF MS KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392885 UR - http://www.mdpi.com/1422-0067/18/3/543/ DO - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 VL - 18 IS - 3 SP - 543 EP - 554 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-39288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(lactide)s via the ROPPOC method catalyzed by alkyl- or aryltin chlorides N2 - A comparison of tributyltin chloride, dibutyltin dichloride,and butyltin trichloride as catalysts of ring-opening polymerizations(ROPs) of l-lactides at 160°C in bulk reveals increasing reactivity in the above order, but only the least reactive catalysts, Bu3SnCl, yield a uniform reaction product, namely cyclic poly(L-lactide)s with weight average molecular weights (Mw ́s) in the range of 40,000–80,000. A comparison of dimethyltin , dibutyltin , and diphenyltin dichlorides resulted in the following order of reactivity: Me2SnCl2120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too. KW - Cyclization KW - Polylactides KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Spirocyclic PY - 2018 DO - https://doi.org/10.1002/pola.29259 SN - 0887-624X SN - 1099-0518 VL - 56 IS - 24 SP - 2730 EP - 2738 PB - Wiley Periodicals AN - OPUS4-46498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465294 DO - https://doi.org/10.1038/s41598-018-34800-1 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - About formation of cycles in Sn(II) octanoate-catalyzed polymerizations of lactides N2 - At first, formation of cycles in commercial poly(Llactide)s is discussed and compared with benzyl alcoholinitiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4-cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end-biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of L-lactide were performed with various diphenols as initiators/co-catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even-numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring-expansion polymerization (REP). The influence of temperature, time, co-catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(L-lactide)s weight average molecular weights (Mw’s) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of Initiator and catalyst and temperature on the formation of cyclic poly(Llactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization KW - Transesterification PY - 2018 DO - https://doi.org/10.1002/pola.29077 SN - 0887-624X VL - 56 IS - 17 SP - 1915 EP - 1925 PB - Wiley Periodicals Inc. AN - OPUS4-46052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeegers, G. P. A1 - Steinhoff, R. F. A1 - Weidner, Steffen A1 - Zenobi, R. T1 - Evidence for laser-induced redox reactions in matrix-assisted laserdesorption/ionization between cationizing agents and target plate material: a study with polystyrene and trifluoroacetate salts N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is often applied to assess the dispersity and the end groups of synthetic polymers through the addition of cationizing agents. Here weaddress how these cation adducts are formed using polystyrene (PS) as a model polymer. We analyzed PSby MALDI-MS with a 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix and a range of trifluoroacetate (TFA) salts as cationizing agents on a range of different targetplate materials (copper, 1.4301 stainless steel, aluminum, Inconel 625, Ti90/Al6/V4 and chromium-, gold-and silver-plated stainless steel). It was found that on a stainless steel substrate the metal cations Al+,Li+, Na+, Cu+and Ag+formed polystyrene adducts, whereas K+, Cs+, Ba2+, Cr3+, Pd2+, In3+, or their lower oxidation states, did not. For the copper and silver substrates, PS and DCTB adduct formation with cations liberated from these target plate materials was observed upon addition of a cationizing agent, which indicates the occurrence of redox reactions between the added TFA salts and the target plate material. Judging from their standard electrode potentials, these redox reactions would not normally occur, i.e.,they require an additional energy input, strongly suggesting that the observed redox reactions are laser-induced. Furthermore, copper granules were found to successfully sequester PS from a tetrahydrofuran(THF) solution, consistent with the view complex formation with the copper target plate can take place prior to the MALDI-MS measurement. KW - Polymer MALDI KW - Cationization KW - Polystyrene KW - Laser-induced redox reactions KW - Target plate material PY - 2017 DO - https://doi.org/10.1016/j.ijms.2016.10.007 SN - 1387-3806 SN - 1873-2798 VL - 416 SP - 80 EP - 89 PB - Elsevier B.V. AN - OPUS4-41146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Cyclic poly(L-lactide)s via simultaneous ROP and polycondensation (ROPPOC) catalyzed by dibutyltin phenoxides N2 - Starting from dibutyltin oxide, four catalysts were synthesized, namely the dibutyltin bisphenoxides of Phenol (SnPh), 4-chlorophenol (SnCP), 4-hydroxybenzonitrile (SnCN) and pentafluorophenol (SnOPF). With the first three catalysts polymerizations of L-lactide at 160 °C in bulk yielded large fraction of linear chains having phenylester end groups at short reaction times. At longer times the fraction of cycles considerably increased at the expense of the linear chains, when SnCN was used as catalyst. With SnOPF only cyclic polylactides were obtained at low Lac/Cat ratios (< 400) with weight average molecular weights (Mw) up to 90 000 Da, whereas for high Lac/Cat ratios mixtures of cyclic and linear chains were found. Polymerizations in solution enabled variation of the molecular weight. Polymerizations of meso-lactide at temperatures down to 60 °C mainly yielded even-numbered linear chains supporting the postulated ROPPOC mechanism. KW - Cyclization KW - MALDI-TOF MS KW - Polycondensation KW - Ring-opening Polymerization KW - Polylactide PY - 2018 DO - https://doi.org/10.1016/j.eurpolymj.2018.10.005 SN - 0014-3057 IS - 109 SP - 360 EP - 366 PB - Elsevier AN - OPUS4-46263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -