TY - JOUR A1 - You, Zengchao A1 - Meier, Florian A1 - Weidner, Steffen ED - Weidner, Steffen T1 - Comparison of miniaturized and conventional asymmetrical flow field flow fractionation (AF4) channels for nanoparticle separation N2 - The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP) using Asymmetrical Flow Field-Flow Fractionation (AF4) was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD) and limit of quantification (LOQ) obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis. KW - Nanoparticles separation asymetrical flow field flow fractionation PY - 2017 DO - https://doi.org/10.3390/separations4010008 SN - 2297-8739 VL - 4 IS - 1 SP - 8, 1 EP - 11 AN - OPUS4-47196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, Hans R. T1 - Transesterification in the solid state of cyclic and linear poly(l-lactide)s N2 - Poly(l-lactide)s are synthesized and annealed at 120 °C and changes of the molecular weight distribution (MWD) are monitored by matrix-assited laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. For example, benzyl alcohol+SnOct2 causes equilibration of odd- and even-numbered chains and the final goal of the transesterification is the most probable distribution. The underlying intermolecular transesterification is even observed at 100 and 80 °C in the solid state. However, cyclic tin mercaptide catalysts transform the initial most probable distribution into a MWD with maxima, which display a conspicuous fine structure due to a preferential crystallization of certain ring sizes. The optimum ring sizes for the crystallization are provided by ring-ring equilibration. The gradual formation of a special morphology shifts the melting temperature to values up to 187 °C. Annealing of commercial poly(l-lactide) with a cyclic tin catalyst also yields a distribution of mass peaks with a maximum showing the characteristic fine structure. KW - Equilibration KW - Mass spectrometry KW - Polylactides KW - Ring-opening polymerization KW - Transesterification PY - 2017 DO - https://doi.org/10.1002/macp.201700114 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 14 SP - 1700114-1 EP - 1700114-10 PB - Wiley-VCH AN - OPUS4-41732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the preparation of pollen grains for MALDI-TOF MS classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - MALDI KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment KW - Principal component analysis PY - 2017 DO - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 SN - 1661-6596 VL - 18 IS - 3 SP - 543-1 EP - 543-11 PB - MDPI AN - OPUS4-41733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of high molecular mass polyglycolides via ring-opening polymerization with simultaneous polycondensation(ROPPOC) by means of tin and zinc catalysts N2 - Glycolide was polymerized in bulk by means of four different ROPPOC catalysts: tin(II) 2-ethylhexanoate (SnOct2), dibutyltin bis(pentafluoro-phenoxide) (BuSnOPF),zinc biscaproate (ZnCap), and zinc bis(pentafluoro-phenyl sulfide) (ZnSPF). The temperature was varied between 110 and 180°C and the time between 3 h and 7 days. For the few polyglycolides (PGAs) that were soluble extremely high molecular masses were obtained. The MALDI TOF mass spectra had all a low signal-to-noise ration and displayed the peaks of cyclic PGAs with a“saw-tooth pattern ”indicating formation of extended-ring crystallites in the mass range below m/z 2500. The shape of DSC curves varied considerably with catalyst and reaction conditions, whereas the long-distance values measured by SAXS were small and varied little with the polymeriza-tion conditions. KW - MALDI TOF MS KW - Polyglycolide KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598221 DO - https://doi.org/10.1002/pat.6365 VL - 35 IS - 4 SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-59822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Just, Ulrich A1 - Thünemann, Andreas A1 - Maltsev, Sergey T1 - Polymer characterization using sophisticated liquid chromatographic techniques combined with MALDI- and ESI-TOF mass spectrometry T2 - 55th ASMS conference on Mass Spectrometry CY - Indianapolis, IN, USA DA - 2007-06-03 PY - 2007 AN - OPUS4-14745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About the Influence of (Non-)Solvents on the Ring Expansion Polymerization of l-Lactide and the Formation of Extended Ring Crystals N2 - Ring-expansion polymerizations (REPs) catalyzed by two cyclic tin catalysts (2-stanna-1.3-dioxa-4,5,6,7-dibenzazepine [SnBiph] and 2,2-dibutyl-2-stanna-1,3-dithiolane [DSTL]) are performed at 140 °C in bulk. Small amounts (4 vol%) of chlorobenzene or other solvents are added to facilitate transesterification reactions (ring–ring equilibration) in the solid poly(l-lactide)s. In the mass range up to m/z 13 000 crystalline PLAs displaying a so-called saw-tooth pattern in the MALDI-TOF mass spectra are obtained indicating the formation of extended-ring crystals. The characteristics of extended-ring crystallites and folded-ring crystallites are discussed. Furthermore, extremely high melting temperatures (Tm’s up to 201.2 °C) and melting enthalpies (𝚫Hm’s up to 106 J g−1)) are found confirming that 𝚫Hm max, the 𝚫Hm of a perfect crystal, is around or above 115 J g−1 in contrast to literature data. KW - Polylactide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Biobased PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573063 DO - https://doi.org/10.1002/macp.202200385 VL - 224 IS - 5 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-57306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis N2 - A reversed phase high performance liquid chromatography coupled to an inductively coupled plasma mass spectrometer (HPLC-ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution. KW - ICP-MS KW - Silver nanoparticles KW - HPLC KW - Isotope dilution analysis KW - Field flow fractionation KW - Toxicology PY - 2016 DO - https://doi.org/10.1016/j.chroma.2016.09.028 SN - 0021-9673 VL - 1468 SP - 102 EP - 108 PB - Elsevier B.V. AN - OPUS4-38642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -