TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Sn(II)2-ethylhexanoate-catalyzed polymerizations of L-lactide in solution – Solution grown crystals of cyclic Poly(L-Lactide)s N2 - L-lactide (LA) was polymerized in toluene by means of neat tin(II) 2-ethylhexanoate (SnOct2). Concentration, time and temperature were varied. The isothermally crystallized polyLAs (PLA) were characterized in the virgin state with regard to topology, molar mass, melting temperature (Tm), crystal modification, high or low Tm morphology, crystallinity and crystal thickness. Even a small amount of solvent favored cyclization relative to polymerization in bulk, so that cyclic polylactides were obtained at 115 ◦C and even at 95 ◦C. At all temperatures the α-modification of PLA was obtained along with crystallinities up to 90%. With 6 M solution the high Tm morphology with Tm’s > 190 ◦C was obtained at 115 ◦C. The crystal thickness of crystallites grown from solution at 115 ◦C was on the average 10–20% higher than that of PLA polymerized in bulk. At a polymerization temperature of 75 ◦C cyclization was incomplete and fewer perfect crystallites were formed. A new hypothesis for the crystal growth of cyclic polyLAs is proposed. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2022 U6 - https://doi.org/10.1016/j.polymer.2022.125142 SN - 0032-3861 VL - 255 SP - 1 EP - 9 PB - Elsevier CY - Oxford AN - OPUS4-55283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About the Influence of (Non-)Solvents on the Ring Expansion Polymerization of l-Lactide and the Formation of Extended Ring Crystals N2 - Ring-expansion polymerizations (REPs) catalyzed by two cyclic tin catalysts(2-stanna-1.3-dioxa-4,5,6,7-dibenzazepine [SnBiph] and 2,2-dibutyl-2-stanna-1,3-dithiolane [DSTL) are performed at 140 °C in bulk. Small amounts (4 vol%) of chlorobenzene or other solvents are added to facilitate transesterification reactions (ring–ring equilibration) in the solid poly(l-lactide)s. In the mass range up to m/z 13 000 crystalline PLAs displaying a so-called saw-tooth pattern in the MALDI-TOF mass spectra are obtained indicating the formation of extended-ring crystals. The characteristics of extended-ring crystallites and folded-ring crystallites are discussed. Furthermore, extremely high melting temperatures (Tm’s up to 201.2 °C) and melting enthalpies (𝚫Hm’s up to 106 J g−1)) are found confirming that 𝚫Hmmax, the 𝚫Hm of a perfect crystal, is around or above 115 J g−1 in contrast to literature data. KW - Polylactide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Crystals PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565038 SN - 1022-1352 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-56503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Synthesis of polylactides by means of tin catalysts N2 - This article reviews the usefulness of tin(II) and tin(IV) salts and compounds as catalysts for the polymerization of lactides. The text is subdivided into nine parts mainly reflecting different polymerization strategies, such as ring-opening polymerization (ROP), ring-expansion polymerization (REP), ROP combined with simultaneous polycondensation (ROPPOC), various catalysts with unknown polymerization mechanisms, and polycondensation of lactic acid. Since the toxicity of tin salts and compounds is a matter of concern and frequently mentioned in numerous publications, the first section deals with facts instead of myths about the toxicity of tin salts and compounds. KW - Polylactide KW - MALDI-TOF MS KW - Tin catalysts PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545050 SP - 1 EP - 30 PB - Royal Society for Chemistry AN - OPUS4-54505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-Expansion Polymerization of 𝝐-Caprolactone, Glycolide, and l-lactide with a Spirocyclic Tin(IV) Catalyst Derived from or 2,2′-Dihydroxy-1,1′-Binaphthyl – New Results and a Revision N2 - In contrast to other cyclic tin bisphenoxides, polymerizations of glycolide and l-lactide with the spirocyclic tin(IV) bis-1,1′-bisnapthoxide yield linear chains having a 1,1′-bisnapthol end group and no cycles. In the case of l-lactide, LA/Cat ratio and temperature are varied and at 160 °C or below, all polylactides mainly consist of even-numbered chains. A total predominance of even-numbered chains is also found for homopolymerization of glycolide, or the copolymerization of glycolide and l-lactide, when conducted <120 °C. Linear chains having a bisnaphthol end group are again the main reaction products of ring-expansion polymerizations (REP) of 𝝐-caprolactone, but above 150 °C cycles are also formed. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-541931 VL - 222 IS - 24 SP - 1 EP - 10 PB - Wiley VCH GmbH AN - OPUS4-54193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - The role of transesterifications in reversible polycondensations and a reinvestigation of the Jacobson-Beckmann-Stockmayer experiments N2 - The polycondensations of adipic acid and 1,10-decanediol catalyzed by toluene sulfonic acid (TSA) were reinvestigated using MALDI TOF mass spectrometry and NMR spectroscopy. Unexpected reactions of TSA were detected along with incomplete conversion of the monomers. Furthermore, transesterification reactions of end-capped poly(1,10-decanediol adipate) and end-capped poly(ε-caprolactone) catalyzed by TSA were studied. Despite the quite different (ionic) reaction mechanisms, it was found that for polycondensations performed in bulk intermolecular transesterification is more efficient than the intramolecular “back-biting”; this scenario was not considered in the Jacobson–Stockmayer theory of reversible polycondensations. These results also confirm that the Jacobson–Stockmayer explanation of reversible polycondensations solely on the basis of ring chain equilibration is not only devoid of any experimental evidence, but also in contradiction to the results elaborated in this work. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543402 SN - 1759-9962 SP - 1 EP - 9 PB - RSC Publ. CY - Cambridge AN - OPUS4-54340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - SnOct2-catalyzed and alcohol-initiated ROPS of L-lactide - Control of the molecular weight and the role of cyclization N2 - Ring-opening polymerizations (ROP) of l-lactide (LA) are conducted in bulk at 130, 160, or 180 °C and are initiated with two different alcohols at 160 °C. The lactide/initiator ratio (LA/In) is varied from 50/1 (20/1 at 180 °C) to 900/1 and the lactide/catalyst ratio (LA/Cat) between 2000/1 and 8000/1. At all temperatures a nearly perfect control of number average molecular weight (Mn) via the LA/In ratio is feasible up to LA/In = 200/1, but at higher ratios the Mn value lags behind the theoretical values and the discrepancy increases with higher LA/Cat ratios. Variation of the LA/Cat ratio influences the formation of cycles but does not significantly influence Mn, when the LA/In ratio is kept constant. The formation of cycles is favored by lower In/Cat ratios and is the main reason for the unsatisfactory control of Mn at high LA/In ratios. The results also suggest that the cycles are mainly or exclusively formed by end-to-end cyclization and not, as believed previously, by back-biting. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Ring-opening polymerization PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543066 SN - 1521-3935 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Poly(L-lactide): Optimization of Melting Temperature and Melting Enthalpy N2 - Twice recrystallized L-lactide was polymerized with a dozen of different tin or bismuth catalysts in bulk at 160°C for 24 h and was annealed at 150°C afterwards. In two cases Tm values above 197.0°C were obtained. The parameters causing a scattering of the DSC data were studied and discussed. The samples prepared with SnCl2, 2,2-dibutyl-2-stanna-1,3-ditholane (DSTL) or cyclic tin(II) bisphenyldioxide (SnBiph) were subject to annealing programs with variation of time and temperatures, revealing that the Tm´s did not increase. However, an increase of Hm was achieved with maximum values in the range of 93-96 J g-1 corresponding to crystallinities off around 90%. Further studies were performed with once recrystallized L-lactide. Again, those samples directly crystallized from the polymerization process showed the highest Tm values. These data were compared with the equilibrium Tm0 and Hm0 data calculated by several research groups for perfect crystallites. A Tm0 of 213+/-2°C and a Hm0 of 106 J g-1 show the best agreement with the experimental data. The consequences of annealing for the thickness growth of crystallites are discussed on the basis of SAXS measurements. Finally, a comparison of cyclic and linear poly L-lactide)s is discussed. KW - Polylactide KW - MALDI-TOF MS KW - Transesterification PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538656 SP - 1 EP - 10 PB - Royal Society for Chemistry AN - OPUS4-53865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed ROPs of L-lactide initiated by acidic OH- compounds: Switching from ROP to polycondensation and cyclization N2 - Ring-opening polymerizations (ROPs) of L-lactide are performed in bulk at 130°C with tin(II) 2-ethylhexanoate as catalyst and various phenols of differentacidity as initiators. Crystalline polylactides having phenyl ester end groups are isolated, which are almost free of cyclics. The dispersities and molecular weights are higher than those obtained from alcohol-initiated ROPs under identical conditions. Polymerizations at 160°C yield higher molecular weights than expected from the monomer/initiator ratio and a considerable fraction of cycles. The fraction of cycles increases with higher reactivity of the ester end group indicating that the cycles are formed by end-to-end cyclization. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-540250 SN - 2642-4150 VL - 60 IS - 5 SP - 785 EP - 793 PB - Wiley AN - OPUS4-54025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Reversible Polycondensations outside the Jacobson-Stockmayer Theory and a New Concept of Reversible Polycondensations N2 - L-Lactide was polymerized with tin(II)acetate, tin(II)2-ethyl hexanoate, diphenyltin dichloride and dibutyltin bis(pentafluorophenoxide) at 130 °C in bulk. When an alcohol was added as initiator, linear chains free of cycles were formed having a degree of polymerization (DP) according to the lactide/initiator (LA/In) ratio. Analogous polymerizations in the absence of an initiator yielded high molar mass cyclic polylactides. Quite similar results were obtained when ε-caprolactone was polymerized with or without initiator. Several transesterification experiments were conducted at 130 °C, either with polylactide or poly(ε-caprolactone) indicating that several transesterification mechanisms are operating under conditions that do not include formation of cycles by back-biting. Furthermore, reversible polycondensations (revPOCs) with low or moderate conversions were found that did not involve any kind of cyclization. Therefore, These results demonstrate the existence of revPOCs, which do neither obey the theory of irreversible polycondensation as defined by Flory nor the hypothesis of revPOCs as defined by Jacobson and Stockmayer. A new concept encompassing any kind of revPOCs is formulated in the form of a “polycondensation triangle”. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530831 VL - 12 IS - 35 SP - 5003 EP - 5016 PB - Royal Society for Chemistry AN - OPUS4-53083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Meyer, A. A1 - Weidner, Steffen T1 - High Tm Poly(l-lactide)s by Means of Bismuth Catalysts? N2 - One series of BiSub-catalyzed ring-opening polymerizations (ROPs) is per-formed at 160 °C for 3 days with addition of difunctional cocatalysts to find out, if poly(l-lactide) crystallizes directly from the reaction mixture. An analogous series is performed with monofunctional cocatalysts. High Tm crystal-lites (Tm > 190 °C) are obtained from all bifunctional cocatalysts, but not from all monofunctional ones. It is shown by means of SAXS measurements that the high Tm values are mainly a consequence of a transesterification–homogenization process across the lamellar surfaces resulting in thickness and smoothing of the surfaces. An unusual enthalpy-driven modification of the molecular weight distribution is found for samples that have crystallized during the polymerization. A third series of ROPs is performed at 170 °C for 2 h followed by annealing at 120 °C (2 h) to induce crystallization. Complete transformation of the resulting low Tm crystallites (Tm < 180 °C) into the high Tm crystallites by annealing at 170 °C for 1 d is not achieved, despite variation of the cocatalyst. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-522777 SN - 1022-1352 VL - 222 IS - 8 SP - 19 PB - Wiley AN - OPUS4-52277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Polymerization of L-lactide with SnCl2: A Low Toxic and Eco-friendly Catalyst N2 - Polymerizations of L-lactide catalyzed either by neat SnCl2 or by SnCl2 + difunctional cocatalysts were conducted in bulk at 180, 160 and 140 °C with variation of the Lac/Cat ratio and time. With neat SnCl2 poly(L-lactide) having weight average molecular weights (uncorrected Mw’s) up to 190 000 g mol−1 were obtained mainly consisting of linear chains. Addition of salicylic acid or 1,1-bisphenol yielded a higher fraction of cyclic polylactides but lower molecular weights. Furthermore, SnCl2 was compared with Bu2SnCl2 and various other metal chlorides and the best results were obtained with SnCl2. With ethyl L-lactate as initiator SnCl2-catalyzed ROPs were performed at 120 °C and the lac/initiator ratio was varied. All these experiments were conducted under conditions allowing for comparison with ROPs catalyzed with neat Sn(II)-2-ethyhexanoate. Such a comparison was also performed with ε-caprolactone as monomer. KW - Catalyst KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520517 SN - 1566-2543 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-52051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, A. A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROPs of L-lactide catalyzed by neat Tin(II)2-ethylhexanoate - Influence of the reaction conditions on Tm and ΔHm N2 - L-Lactide was polymerized by means of neat SnOct2 with variation of LA/Cat ratio, temperature and time. The resulting cyclic polylactides crystallized spontaneously at 160 °C or below, but needed nucleation via mechanical stress at 165 or 170 °C. All the crystalline polylactides obtained directly from ROP above 120 °C had melting temperatures (Tm) above 189 °C (up to 194.5 °C). SnOct2 also enabled transformation of low Tm poly(L-lactide)s (Tm <180 °C) into the high Tm m1odification by annealing, due to the impact of transesterification reactions in the interphase between the crystallites. The influence of crystallization temperature and annealing time on the crystal thickness was studied via SAXS measurements. A comparison with the crystallization and annealing experiments reported by Pennings and coworkers and Tsuji and Ikada is discussed, and a satisfactory agreement has been found, because those authors also studied polyLA samples containing SnOct2 in its active form. It is also demonstrated in this work that the high Tm modification cannot be obtained when the catalyst is removed or poisoned as it is true for commercial polylactides. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization PY - 2021 U6 - https://doi.org/10.1016/j.polymer.2021.124122 SN - 0032-3861 VL - 231 SP - 1 EP - 10 PB - Elsevier CY - Oxford AN - OPUS4-53194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed and alcohol-initiated ROPs of L-lactide – About the influence of initiators on chemical reactions in the melt and the solid state N2 - SnOct2 (Sn(II) 2-ethylhexanoate) catalyzed ROPs of L-lactide were performed in bulk with eight different alcohols as initiators. The time was varied between 1 h and 24 h for all initiators. For two initiators the temperature was also lowered to 115 ◦C. Even-numbered chains were predominantly formed in all polymerizations at short times, but the rate of transesterification (e.g. even/odd equilibration) and the molecular weight distribution were found to depend significantly on the nature of the initiator. Observed transesterification reactions also continued in solid poly (L-lactide), and with the most active initiator, almost total equilibration was achieved even at 130 ◦C. This means that all chains including those of the crystallites were involved in transesterification reactions proceeding across the flat surfaces of the crystallites. The more or less equilibrated crystalline polylactides were characterized by DSC and SAXS measurements with regard to their melting temperature (Tm), crystallinity and crystal thickness. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Catalysts KW - SAXS PY - 2021 U6 - https://doi.org/10.1016/j.eurpolymj.2021.110508 VL - 153 SP - 110508 PB - Elsevier Ltd. AN - OPUS4-52633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Alcohol-Initiated and SnOct2-Catalyzed Ring-Opening Polymerization (ROP) of L-Lactide in Solution: A Re-investigation N2 - Alcohol-initiated ring-opening polymerizations (ROP) of L-lactide (LA) were studied in solution at 70 °C, whereupon the nature of the alcohol, the LA/initiator ratio, the LA/SnOct2 ratio and the time were varied. In contrast to literature, neat SnOct2 is catalytically active in THF and several aromatic but donor solvents, such as 1,3-dioxolane, dimethylformamide (DMF) or N-methyl pyrrolidone (NMP), strongly reduce the activity of SnOct2. In agreement with literature, no cycles were formed by neat SnOct2 at 70 °C in toluene, whereas almost complete cyclization occurs at 115 °C. This finding is attributed to strongly reduced mobility of the initially formed linear chains having one Sn-O-CH and one anhydride end group. Due to better solvation and enhanced mobility cyclization occurs in THF at 70 °C. KW - Polylactide KW - Ring-opening polymerization KW - MALDI-TOF MS KW - Transesterification PY - 2023 U6 - https://doi.org/10.1016/j.eurpolymj.2023.111822 SN - 0014-3057 SP - 1 EP - 18 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-56818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lahcini, M. A1 - Weidner, Steffen A1 - Oumayama, J. A1 - Scheliga, F. A1 - Kricheldorf, H. R. T1 - Unsaturated Copolyesters of Lactide N2 - Four classes of unsaturated copolyesters of L-lactide were prepared either from isosorbide or bis(hydroxymethyl)tricyclodecane in combination with fumaric acid or from 1,4-butenediol or 1,4- butynediol with terephthalic acid. All syntheses were performed in such a way that lactide was oligomerized with a diol as the initiator and the resulting oligomers were polycondensed with a dicarboxylic acid dichloride either in a one-pot synthesis or in a two-step procedure. For most copolyesters the SEC measurements gave weight average molecular weights in the range of 30–60 kg mol⁻1 and dispersities in the range of 4.2–6.2. The MALDI-TOF mass spectra displayed a high content of cycles and indicated an irreversible kinetic course of all polycondensations. Glass-transition temperatures (Tg) above 90 °C were only found for two copolyesters of isosorbide. Addition of bromine to copolyesters of 1,4-butenediol yielded flame retarding biodegradable polymers. KW - Copolyester KW - MALDI-TOF MS KW - SEC KW - Lactide PY - 2016 U6 - https://doi.org/10.1039/c6ra16008e VL - 2016/6 IS - 96 SP - 93496 EP - 93504 PB - Royal Society of Chemistry AN - OPUS4-37913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molar mass cyclic poly(L-lactide)s by means of neat tin (II) 2-ethylhexanoate N2 - L-lactide was polymerized in bulk at 120, 140, 160 and 180°C with neat tin(II) 2-ethylhexanoate (SnOct2) as catalyst. At 180°C the Lac/Cat ratio was varied from 25/1 up to 8 000/1 and at 160°C from 25/1 up to 6 000/1. The vast majority of the resulting polylactides consist of cycles in combination with a small fraction of linear chains having one octanoate and one COOH end group. The linear chains almost vanished at high Lac/Cat ratios, as evidenced by MALDI-TOF mass spectrometry and measurements of intrinsic viscosities and dn/dc values. At Lac/Cat ratios <1000/1 the number average molar masses (Mn) are far higher than expected for stoichiometic initiation, and above 400/1 the molar masses vary relatively little with the Lac/Cat ratio. At 180° slight discoloration even at short times and degradation of the molar masses were observed, but at 160°C or below colorless products with weight average molar masses (Mw) up to 310 000 g mol-1 were obtained. The formation of high molar mass cyclic polylactides is explained by a ROPPOC (Ring-Opening Polymerizatiom with simultaneous Polycondensation) mechanism with intermediate formation of linear chains having one Sn-O-CH end group and one mixed anhydride end group. Additional experiments with tin(II)acetate as catalyst confirm this interpretation. These findings together with the detection of several transesterification mechanisms confirm previous critique of the Jacobson-Stockmayer theory. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 U6 - https://doi.org/10.1039/d0py00811g VL - 11 IS - 32 SP - 5249 EP - 5260 PB - Royal Society for Chemistry AN - OPUS4-51130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - The Ring-Opening Polymerisation-Polycondensation (ROPPOC) Approach to cyclic Polymers N2 - A new concept called “Ring-Opening Polymerization (ROP) combined with simultaneous POlyCondensation” (ROPPOC) is presented and discussed. This synthetic strategy is based on the intermediate formation of chains having two end groups that can react with each other. The ROPPOC syntheses are subdivided into three groups according to the nature of the chain ends: two ionic end groups, one ionic and one covalent chain end and a combination of two reactive covalent end groups may be involved, depending on the catalyst. The usefulness for the preparation of cyclic polymers is discussed with a review of numerous previously published examples. These examples concern to following classes of cyclic polymers: polypeptides, polyamides, polyesters, including polycarbonates, and cyclic polysiloxanes. It is demonstrated, that the results of certain ROPPOC syntheses are in contradiction to the Jacobson-Stockmayer theory. Finally, the usefulness of ROPPOCs for the detection of polydisperse catenanes is discussed. KW - Ring-opening Polymerisation KW - MALDI-TOF MS KW - ROPPOC KW - Cyclic PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508509 SP - 2000152 PB - Wiley AN - OPUS4-50850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Matrix-assisted laser desorption/ionization behavior of neat linear and cyclic poly(L-lactide)s and their blends N2 - Numerous new tin catalysts that enable the synthesis of cyclic polylactides with broad variation in their molecular mass were recently developed. The abundance of cyclics in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra is, however, frequently reported to greatly exceed that of linears. Thus, the MALDI ionization behavior of various end-capped linear poly(L-lactide)s and one cyclic poly(L-lactide) was investigated and compared. Neat compounds and various blends of cyclic and linear species were prepared and studied under identical conditions with regard to sample preparation and instrumental condition, except for the laser power. For this purpose, two different MALDI-TOF mass spectrometers were applied. Our results reveal that cyclics indeed show a slightly better ionization in MALDI, although their ionization as a neat compound seems to be less effective than that of linear polylactides. The ionization of most linear polylactides investigated does not depend on the end group structure. However, linear polylactides containing 12-bromododecyl end groups reveal an unexpected saturation effect that is not caused by fragmentation of the polymer or the end group, or by electronic saturation of the detector digitizer. Furthermore, polylactides with a 2-bromoethyl end group did not show such a saturation effect. An overestimation of cyclic species in MALDI-TOF mass spectra of poly(L-lactide)s must be considered, but the commonly assumed peak suppression of linear polymers in mixtures of both structures can be excluded. KW - Polylactide KW - MALDI-TOF MS KW - Blends KW - Ionization PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504216 VL - 34 SP - e8673 PB - Wiley Online Libary AN - OPUS4-50421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic polymers and flaws of the Jacobson–Stockmayer theory N2 - Cyclic poly(L-lactide)s were prepared by ring-opening polymerization combined with simultaneous polycondensation (ROPPOC) in bulk at 160 ° with dibutyltin bis(4-cyanophenoxide) as catalyst. It is demonstrated by MALDI TOF mass spectrometry and 1H NMR end group analyses that cycles are formed by endto-end cyclization in addition to “back-biting” transesterification. Formation of high molar mass cyclic poly L-lactide)s by means of several more reactive ROPPOC catalysts presented previously and in new experiments is discussed. These experimental results, together with theoretical arguments, prove that part of the Jacobson–Stockmayer theory is wrong. The critical monomer concentration, above which end-toend cyclization is seemingly impossible, does not exist and reversible like irreversible polycondensations can theoretically proceed up to 100% conversion, so that finally all reaction products will necessarily adopt a cyclic architecture. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506419 VL - 11 IS - 14 SP - 2595 EP - 2604 PB - Royal Society for Chemistry AN - OPUS4-50641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Ring–Ring Equilibration in Solid, Even-Numbered Cyclic Poly(l-lactide)s and their Stereocomplexes N2 - Even-numbered cyclic poly(d-lactide) and poly(l-lactide) are prepared by ringexpansion polymerization. The cyclic pol(l-lactide) is annealed either at 120 or at 160 °C for several days. The progress of transesterification in the solid state is monitored by the formation of odd-numbered cycles via matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The changes of the crystallinity are monitored by differential scanning calorimetry, wideand small-angle x-ray scattering (WAXS and SAXS) measurements. Despite total even-odd equilibration at 160 °C, the crystallinity of poly(l-lactide) is not reduced. Furthermore, the crystallinity of the stereocomplexes of both cyclic polylactides do not decrease or vanish, as expected, when a blocky or random stereosequence is formed by transesterification. This conclusion is confirmed by 13C NMR spectroscopy. These measurements demonstrate that transesterification is a ring–ring equilibration involving the loops on the surfaces of the lamellar crystallites thereby improving crystallinity and 3D packing of crystallites without significant broadening of the molecular weight distribution. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506458 VL - 221 IS - 9 SP - 2000012 PB - Wiley-VCH Verlag AN - OPUS4-50645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - High Tm poly(L-lactide)s via REP or ROPPOC of L-lactide N2 - A new kind of high melting (HTm) pol(L-lactide) was discovered when cyclic poly(L-lactide)s were prepared by ring-expansion polymerization with cyclic tin catalysts at 130–160 °C in bulk. By DSC measurements with 10 K min−1 melting temperatures (Tm) in the range of 190–196 °C were found. The WAXS and SAXS measurements evidenced that not a new crystal lattice but a well-ordered morphology and a higher perfection of the crystallites are responsible for the high Tm values and high crystallinities. Under identical reaction conditions SnOct2-catalyzed and alcohol-initiated ROPs do not yield these crystallites. Furthermore, it was found that the standard crystallites are kinetically favored upon rapid crystallization, whereas the high melting form of poly(L-lactide) is thermodynamically more stable. KW - Polylactide KW - MALDI-TOF MS KW - ROPPOC PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507477 VL - 11 IS - 12 SP - 2182 EP - 2193 PB - Royal Society of Chemistry AN - OPUS4-50747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic poly(l-lactide) catalyzed by Bismuth salicylates-A combination of two drugs N2 - l‐lactide was polymerized in bulk at 160 or 180°C with mixtures of bismuth subsalicylate (BiSub) and salicylic (SA) as catalysts. The SA/Bi ratio and the monomer/Bi ratio were varied. The highest molecular weights (weight average, Mw) were achieved at a SA/Bi ratio of 1/1 (Mw up to 92 000 g mol−1). l‐Lactide was also polymerized with combinations of BiSub and silylated SA, and Mw values up to 120 000 g mol−1 were achieved at 180°C. MALDI‐TOF mass spectrometry and Mark‐Houwink‐Sakurada measurements proved that under optimized reaction conditions the resulting polylactides consist of cycles. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Salicylate PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-488622 SN - 0887-624X SN - 1099-0518 SP - 29473 PB - Wiley AN - OPUS4-48862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Reply to the comment on “synthesis of cyclic polymers and flaws of the Jacobson-Stockmayer theory” by R. Szymanski N2 - In a recent publication the authors have presented theoretical and experimental results indicating that the Jacobson–Stockmayer (JS) theory does not provide a correct description of reversible polycondensations for all polymers and for high conversions (e.g. polycondensation in bulk). In this context reversibility means that all condensation step whether resulting in chain growth or in cyclization are reversible and thus, part of an equilibrium. The first two sections of that paper were focused on the demonstration that small, and above all, large cycles can be formed by end-to-end (ete) cyclization in reversible like in irreversible polycondensations. A significant contribution of ete-cyclization to the course of reversible polycondensations was denied by J + S apparently as a contribution to Florýs dogma, that the end groups of long polymer chains will never meet. KW - Polylactide KW - MALDI-TOF MS KW - Jacobsen-Stockmayer theory PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513985 VL - 11 IS - 38 SP - 6226 EP - 6228 PB - Royal Society of Chemistry AN - OPUS4-51398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Chatti, S. A1 - Kricheldorf, H. R. T1 - About the transformation of low Tm into high Tm poly(L-lactide)s by annealing under the influence of transesterification catalysts N2 - Cyclic polylactides were prepared in bulk at 170 °C, crystallized at 120 °C and then annealed at temperatures between 130 and 170 C with variation of catalyst, catalyst concentration and annealing time. The transformation of the initially formed low melting (LTm) crystallites, having melting temperatures (Tm) <180 °C into high melting (HTm) crystallites having Tm values > 189 °C was monitored by means of DSC measurements and characterized in selected cases by SAXS measurements. It was confirmed that the formation of HTm crystallites involves a significant growth of the thickness of the lamellar crystallites along with smoothing of their surface. Annealing at 170 °C for 1 d or longer causes thermal degradation with lowering of the molecular weights, a gradual transition of cyclic into linear chains and a moderate decrease of lamellar thickness. An unexpected result revealed by MALDI TOF mass spectrometry is a partial reorganization of the molecular weight distribution driven by a gain of crystallization enthalpy. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Annealing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521062 VL - 11 IS - 5 SP - 2872 EP - 2883 PB - Royal Society of Chemistry AN - OPUS4-52106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) and tin(iv) acetates–switching from COOH terminated linear chains to cycles N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2 Oct2SnAc2. KW - Catalyst KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Tin acetates KW - Polylactide PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520831 SP - 1 EP - 12 PB - Wiley Online Library AN - OPUS4-52083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. A1 - Scheliga, F. T1 - Ring-expansion copolymerization of L-lactide and glycolide N2 - 1:1 Copolymerizations of glycolide (GL) and L-lactide (LA) is performed in bulk at 100°C and at 160°C with four cyclic tin catalysts. The resulting copolyesters are characterized by SEC measurements, 1H and 13C NMR spectroscopy and by MALDI TOF mass spectrometry. At 160°C and longer reaction time (22 h) nearly complete conversion of both monomers is achieved, and cyclic copolymers with nearly random sequences are formed. At shorter times (0.5-3.0 h, depending on catalyst) the conversion of LA is incomplete, and only cyclics having even numbers of lactyl units are obtained. At 100°C at 22 h again cycles mainly consisting of even numbered lactyl units are formed, but with even and odd numbers of glycolyl units. Copolymerization of lactide at 160°C with small amounts of GL show that formation of high Tm crystallites (Tm > 190°C) is hindered even when only > 2% of GL is added. For polyglycolide containing a smaller amount of lactide complete solubility in hexafluoroisopropanol is only observed around and above 20 mol% of lactide. KW - Ring-expansion polymerization KW - Copolymerization KW - MALDI-TOF MS KW - L-lactide KW - Glycolide KW - Crystallization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520270 SN - 1022-1352 VL - 22 IS - 3 SP - 307 PB - WileyVCH AN - OPUS4-52027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molecular weight poly(l-lactide) via ring-opening polymerization with bismuth subsalicylate-The role of cocatalysts N2 - The catalytic potential of bismuth subsalicylate (BiSub), a commercial drug, for ring-opening polymerization (ROP) of L-lactide was explored by variation of co-catalyst and polymerization time. Various monofunctional phenols or carboxylic acids, aromatic ortho-hydroxy acids and diphenols were examined as potential co-catalysts. 2,2´-Dihydroxybiphenyl proved to be the most successful co-catalyst yielding weight average molecular weights (uncorrected Mw values up to 185 000) after optimization of reaction time and temperature. Prolonged heating (>1-2h) depending on catalyst concentration) caused thermal degradation. In polymerization experiments with various commercial Bi(III) salts a better alternative to BiSub was not found. By means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry a couple of unusual and unexpected transesterification reactions were discovered. Finally, the effectiveness of several antioxidants and potential catalyst poisons was explored, and triphenylphosphine was found to be an effective catalyst poison. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Bismuth PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519513 SN - 0021-8995 VL - 138 IS - 19 SP - 50394 PB - Wiley AN - OPUS4-51951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - High Tm linear poly(L-lactide)s prepared via alcohol-initiated ROPs of L-lactide N2 - Alcohol-initiated ROPs of L-lactide were performed in bulk at 160 °C for 72 h with variation of the catalyst or with variation of the initiator (aliphatic alcohols). Spontaneous crystallization was only observed when cyclic Sn(II) compounds were used as a catalyst. Regardless of initiator, high melting crystallites with melting temperatures (Tm) of 189–193 °C were obtained in almost all experiments with Sn(II) 2,2′-dioxybiphenyl (SnBiph) as catalyst, even when the time was shortened to 24 h. These HTm poly(lactide)s represent the thermodynamically most stable form of poly(L-lactide). Regardless of the reaction conditions, such high melting crystallites were never obtained when Sn(II) 2-ethylhexanoate (SnOct2) was used as catalyst. SAXS measurements evidenced that formation of HTm poly(L-lactide) involves growth of the crystallite thickness, but chemical modification of the crystallite surface (smoothing) seems to be of greater importance. A hypothesis, why the “surface smoothing” is more effective for crystallites of linear chains than for crystallites composed of cycles is discussed. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524330 VL - 11 IS - 23 SP - 14093 EP - 14102 PB - Royal Society of Chemistry AN - OPUS4-52433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) andtin(iv) acetates–switching from COOH terminated linear chains to cycles N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130°C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2~Oct2SnAc2 KW - Polylactide KW - MALDI-TOF MS KW - Catalyst KW - Ring-opening polymerization KW - Tin acetates PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521923 VL - 59 IS - 5 SP - 439 EP - 450 PB - Wiley Online Library AN - OPUS4-52192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic Polylactides via Simultaneous Ring-Opening Polymerization and Polycondensation Catalyzed by Dibutyltin Mercaptides N2 - L-Lactide is polymerized in bulk at 160 8C either with dibutyltin bis(benzylmercaptide) (SnSBzl), dibutyltin bis(benzothiazole 2-mercaptide) (SnMBT), or with dibutyltin bis(pentafluorothiophenolate) (SnSPF) as catalysts. SnSBzl yields linear polylactides having benzylthio-ester end groups in addition to cyclic polylactides, whereas SnMBT and SnSPF mainly or exclusively yield cyclic polylactides. This finding, together with model reactions, indicates that the SnS catalysts promote a combined ring-opening polymerization and polycondensation process including end-to-end cyclization. SnMBT caused slight racemization (3%–5%), when used at 160 8C. With SnSPF optically pure cyclic poly(L-lactide)s with high-molecular weights can be prepared at 160 8C. KW - Cyclopolymerization KW - Catalysts KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization PY - 2017 U6 - https://doi.org/10.1002/pola.28762 VL - 55 IS - 22 SP - 3767 EP - 3775 PB - Wiley Periodicals AN - OPUS4-42600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Spirocyclic bisphenoxides of Ge, Zr, and Sn as catalysts for ring-expansion polymerizations of L- and meso-lactide N2 - Spirocyclic phenoxides of germanium, zirconium, and tin were prepared from 2,20-dihydroxybiphenyl and 2,20-dihydroxy-1,10-binaphthyl. Ring-expansion polymerizations of L-lactide are mainly studied at 160 or 180 °C. The reactivity of the catalysts increases in the order: Zr < Ge < Sn. Regardless of catalyst, the weight-average molecular weights (Mw) never exceed 50,000 g mol−1. The resulting poly(L-lactide)s are optically pure and have a cyclic architecture. Decreasing temperature and time favor Formation of even-numbered cycles, and at 102 ° cyclics, almost free of odd-numbered rings are obtained. Analogous polymerizations of meso-lactide give similar results >120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too. KW - Cyclization KW - Polylactides KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Spirocyclic PY - 2018 U6 - https://doi.org/10.1002/pola.29259 SN - 0887-624X SN - 1099-0518 VL - 56 IS - 24 SP - 2730 EP - 2738 PB - Wiley Periodicals AN - OPUS4-46498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - About formation of cycles in Sn(II) octanoate-catalyzed polymerizations of lactides N2 - At first, formation of cycles in commercial poly(Llactide)s is discussed and compared with benzyl alcoholinitiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4-cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end-biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of L-lactide were performed with various diphenols as initiators/co-catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even-numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring-expansion polymerization (REP). The influence of temperature, time, co-catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(L-lactide)s weight average molecular weights (Mw’s) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of Initiator and catalyst and temperature on the formation of cyclic poly(Llactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization KW - Transesterification PY - 2018 U6 - https://doi.org/10.1002/pola.29077 SN - 0887-624X VL - 56 IS - 17 SP - 1915 EP - 1925 PB - Wiley Periodicals Inc. AN - OPUS4-46052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Cyclic poly(L-lactide)s via simultaneous ROP and polycondensation (ROPPOC) catalyzed by dibutyltin phenoxides N2 - Starting from dibutyltin oxide, four catalysts were synthesized, namely the dibutyltin bisphenoxides of Phenol (SnPh), 4-chlorophenol (SnCP), 4-hydroxybenzonitrile (SnCN) and pentafluorophenol (SnOPF). With the first three catalysts polymerizations of L-lactide at 160 °C in bulk yielded large fraction of linear chains having phenylester end groups at short reaction times. At longer times the fraction of cycles considerably increased at the expense of the linear chains, when SnCN was used as catalyst. With SnOPF only cyclic polylactides were obtained at low Lac/Cat ratios (< 400) with weight average molecular weights (Mw) up to 90 000 Da, whereas for high Lac/Cat ratios mixtures of cyclic and linear chains were found. Polymerizations in solution enabled variation of the molecular weight. Polymerizations of meso-lactide at temperatures down to 60 °C mainly yielded even-numbered linear chains supporting the postulated ROPPOC mechanism. KW - Cyclization KW - MALDI-TOF MS KW - Polycondensation KW - Ring-opening Polymerization KW - Polylactide PY - 2018 U6 - https://doi.org/10.1016/j.eurpolymj.2018.10.005 SN - 0014-3057 IS - 109 SP - 360 EP - 366 PB - Elsevier AN - OPUS4-46263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About the Influence of (Non-)Solvents on the Ring Expansion Polymerization of l-Lactide and the Formation of Extended Ring Crystals N2 - Ring-expansion polymerizations (REPs) catalyzed by two cyclic tin catalysts (2-stanna-1.3-dioxa-4,5,6,7-dibenzazepine [SnBiph] and 2,2-dibutyl-2-stanna-1,3-dithiolane [DSTL]) are performed at 140 °C in bulk. Small amounts (4 vol%) of chlorobenzene or other solvents are added to facilitate transesterification reactions (ring–ring equilibration) in the solid poly(l-lactide)s. In the mass range up to m/z 13 000 crystalline PLAs displaying a so-called saw-tooth pattern in the MALDI-TOF mass spectra are obtained indicating the formation of extended-ring crystals. The characteristics of extended-ring crystallites and folded-ring crystallites are discussed. Furthermore, extremely high melting temperatures (Tm’s up to 201.2 °C) and melting enthalpies (𝚫Hm’s up to 106 J g−1)) are found confirming that 𝚫Hm max, the 𝚫Hm of a perfect crystal, is around or above 115 J g−1 in contrast to literature data. KW - Polylactide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Biobased PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573063 VL - 224 IS - 5 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-57306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - About the crystallization of cyclic and linear poly(L-lactide)s in alcohol-initiated and Sn(II)2-ethylhexanoate- catalyzed ROPs of L-lactide conducted in solution N2 - 1-Hydroxymethylnaphtalene (HMN) or 11-bromoundecanol (BUND) were used as initiators and Sn(II) 2-ethylhexanoate (SnOct2) as catalyst for ROPs of L-Lactide (LA) at 115 °C in bulk or in 4 M and 2M solutions in toluene. The LA/In ratio, the LA/Cat ratio and the time were varied. The matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectra exclusively displayed peaks of linear chains, when the ROPs were conducted in bulk. But in contrast to reports in the literature, mixtures of linear and cyclic poly(L-lactide) (PLA), were obtained, when the ROPs were performed in solution. The intensity distribution of the mass peaks of cyclic PLAs displayed a “saw-tooth pattern” after annealing in contrast to the mass peak distribution of the liner chains. This new phenomenon indicated that cyclic PLAs and linear PLAs crystallized in separate crystals from the same reaction mixture. This conclusion was confirmed by fractionated crystallization from 2 M solution, which confirmed that the cyclic PLAs nucleate and crystallize faster than the linear chains. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Crystallization PY - 2023 U6 - https://doi.org/10.1016/j.polymer.2023.125946 SN - 0032-3861 VL - 276 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-57308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Alcohol-initiated and Tin(II) 2-ethylhexanoate-catalyzed polymerization of L-lactide in bulk – About separate crystallization of cyclic and linear Poly (L-lactide)s N2 - Alcohol-initiated ROPs of L-Lactide were performed at 140 ◦C in bulk with variation of the initiator/catalyst ratio and time. Lower ratios favor the formation of cycles which upon annealing display a change of the MALDI mass peak distribution towards a new maximum with a “saw-tooth pattern” of the mass peaks representing the cycles. Such a pattern was not observed for the mass peak of the linear chains. The coexistence of these patterns indicate that linear and cyclic poly (L-lactide)s (PLA) crystallize in separate crystals, and that the crystallites of the cycles are made up by extended rings. High Tm and ΔHm values confirm that these extended-ring crystallites represent a thermodynamically optimized form of PLA. Experiments with preformed cyclic and linear PLAs support this interpretation. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2023 U6 - https://doi.org/10.1016/j.polymer.2023.126355 VL - 285 IS - 126355 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-592934 SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -