TY - JOUR A1 - Thünemann, Andreas A1 - Knappe, Patrick A1 - Bienert, Ralf A1 - Weidner, Steffen T1 - Online coupling of field-flow fractionation with SAXS and DLS for polymer analysis N2 - We report on a hyphenated polymer analysis method consisting of asymmetrical flow field-flow fractionation (A4F) coupled online with small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). A mixture of six poly(styrene sulfonate)s with molar masses in the range of 6.5 × 103 to 1.0 × 106 g mol-1 was used as a model system for polyelectrolytes in aqueous solutions with a broad molar mass distribution. A complete polymer separation and analysis was performed in 60 min. Detailed information for all polymer fractions are available on i) the radii of gyration, which were determined from the SAXS data interpretation in terms of the Debye model (Gaussian chains), and ii) the diffusion coefficients (from DLS). We recommend using the A4F-SAXS-DLS coupling as a possible new reference method for the detailed analysis of complex polymer mixtures. Advantages of the use of SAXS are seen in comparison to static light scattering for polymers with radii of gyration smaller then 15 nm, for which only SAXS produces precise analytical results on the size of the polymers in solution. PY - 2009 U6 - https://doi.org/10.1039/b9ay00107g SN - 1759-9660 SN - 1759-9679 VL - 1 SP - 177 EP - 182 PB - RSC Publ. CY - Cambridge AN - OPUS4-20567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thünemann, Andreas A1 - Rolf, Simone A1 - Knappe, Patrick A1 - Weidner, Steffen T1 - In Situ Analysis of a Bimodal Size Distribution of Superparamagnetic Nanoparticles N2 - The dispersed iron oxide nanoparticles of ferrofluids in aqueous solution are difficult to characterize due to their protective polymer coatings. We report on the bimodal size distribution of superparamagnetic iron oxide nanoparticles found in the MRI contrast agent Resovist, which is a representative example of commercial nanoparticle-based pharmaceutical formulations. The radii of the majority of the nanoparticles (>99%) range from 4 to 13 nm (less than 1% of the particles display radii up to 21 nm). The maxima of the size distributions are at 5.0 and 9.9 nm. The analysis was performed with in situ characterization of Resovist via online coupling of asymmetrical flow field-flow fractionation (A4F) with small-angle X-ray scattering (SAXS) using a standard copper X-ray tube as a radiation source. The outlet of the A4F was directly coupled to a flow capillary on the SAXS instrument. SAXS curves of nanoparticle fractions were recorded at 1-min time intervals. We recommend using the A4F-SAXS coupling as a routine method for analysis of dispersed nanoparticles with sizes in the range of 1-100 nm. It allows a fast and quantitative comparison of different batches without the need for sample preparation. PY - 2009 U6 - https://doi.org/10.1021/ac802009q SN - 0003-2700 SN - 1520-6882 VL - 81 IS - 1 SP - 296 EP - 301 PB - American Chemical Society CY - Washington, DC AN - OPUS4-18658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -