TY - JOUR A1 - Kricheldorf, H. R. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - What does conversion mean in polymer science? JF - Macromolecular Chemistry and Physics N2 - The definition of the term “conversion” is discussed for a variety of polymer syntheses. It is demonstrated that in contrast to organic and inorganic chemistry several different definitions are needed in polymer science. The influence of increasing conversion on structure and topology of homo- and Copolymers is illustrated. Chain-growth polymerizations, such as radical polymerization or living anionic polymerizations of vinyl monomers, condensative chain polymerization, two and three-dimensional step-growth polymerizations, ring–ring or chain–chain equilibration and chemical modification of polymers are considered. KW - Polymers KW - Polymerization KW - Conversion KW - Polycondensation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523597 DO - https://doi.org/10.1002/macp.202100010 VL - 222 IS - 8 SP - 10 PB - Wiley VCH AN - OPUS4-52359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-Expansion Polymerization of 𝝐-Caprolactone, Glycolide, and l-lactide with a Spirocyclic Tin(IV) Catalyst Derived from or 2,2′-Dihydroxy-1,1′-Binaphthyl – New Results and a Revision JF - Macromolecular Chemistry and Physics N2 - In contrast to other cyclic tin bisphenoxides, polymerizations of glycolide and l-lactide with the spirocyclic tin(IV) bis-1,1′-bisnapthoxide yield linear chains having a 1,1′-bisnapthol end group and no cycles. In the case of l-lactide, LA/Cat ratio and temperature are varied and at 160 °C or below, all polylactides mainly consist of even-numbered chains. A total predominance of even-numbered chains is also found for homopolymerization of glycolide, or the copolymerization of glycolide and l-lactide, when conducted <120 °C. Linear chains having a bisnaphthol end group are again the main reaction products of ring-expansion polymerizations (REP) of 𝝐-caprolactone, but above 150 °C cycles are also formed. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541931 DO - https://doi.org/10.1002/macp.202100308 VL - 222 IS - 24 SP - 1 EP - 10 PB - Wiley VCH GmbH AN - OPUS4-54193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - Syntheses of Cyclic Poly(l-lactide)s by Means of Zinc-Based Ring-Opening Polymerization with Simultaneous Polycondensation (ROPPOC) Catalysts JF - Macromolecular Chemistry and Physics N2 - Ring-opening polymerizations of l-lactide are studied in bulk at 140 or 160 °C with zinc n-hexanoate, zinc 4-chlorothiophenolate, and zinc pentafluoro thiophenolate (ZnSPF) as catalysts. The reactivity increases in the given order. With all three catalysts a high fraction of cycles is obtained only at polymerization (annealing) times around 7 d. With ZnSPF weight average molecular weights (Mw) up to 178 000, a Tm around 199 °C and a 𝚫Hm around 99 J g−1 were achieved. The samples annealed for 4 or 7 d also display a saw tooth pattern of the mass peak distribution in the matrix-assisted laser desorption/ionization time of flight spectra indicating transesterification reactions across the surface of extended ring crystals. This process optimizes the thermodynamical properties of the crystalline cyclic polylactides and is responsible for the high Tm and 𝚫Hm values. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578264 DO - https://doi.org/10.1002/macp.202300070 SN - 1022-1352 SP - 202300070 PB - Wiley VHC-Verlag AN - OPUS4-57826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -