TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) andtin(iv) acetates–switching from COOH terminated linear chains to cycles JF - Journal of Polymer Science A: Polymer Chemistry N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130°C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2~Oct2SnAc2 KW - Polylactide KW - MALDI-TOF MS KW - Catalyst KW - Ring-opening polymerization KW - Tin acetates PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521923 DO - https://doi.org/10.1002/pol.20200866 VL - 59 IS - 5 SP - 439 EP - 450 PB - Wiley Online Library AN - OPUS4-52192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, A. A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROPs of L-lactide catalyzed by neat Tin(II)2-ethylhexanoate - Influence of the reaction conditions on Tm and ΔHm JF - Polymer N2 - L-Lactide was polymerized by means of neat SnOct2 with variation of LA/Cat ratio, temperature and time. The resulting cyclic polylactides crystallized spontaneously at 160 °C or below, but needed nucleation via mechanical stress at 165 or 170 °C. All the crystalline polylactides obtained directly from ROP above 120 °C had melting temperatures (Tm) above 189 °C (up to 194.5 °C). SnOct2 also enabled transformation of low Tm poly(L-lactide)s (Tm <180 °C) into the high Tm m1odification by annealing, due to the impact of transesterification reactions in the interphase between the crystallites. The influence of crystallization temperature and annealing time on the crystal thickness was studied via SAXS measurements. A comparison with the crystallization and annealing experiments reported by Pennings and coworkers and Tsuji and Ikada is discussed, and a satisfactory agreement has been found, because those authors also studied polyLA samples containing SnOct2 in its active form. It is also demonstrated in this work that the high Tm modification cannot be obtained when the catalyst is removed or poisoned as it is true for commercial polylactides. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization PY - 2021 DO - https://doi.org/10.1016/j.polymer.2021.124122 SN - 0032-3861 VL - 231 SP - 1 EP - 10 PB - Elsevier CY - Oxford AN - OPUS4-53194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed and alcohol-initiated ROPs of L-lactide – About the influence of initiators on chemical reactions in the melt and the solid state JF - European Polymer Journal N2 - SnOct2 (Sn(II) 2-ethylhexanoate) catalyzed ROPs of L-lactide were performed in bulk with eight different alcohols as initiators. The time was varied between 1 h and 24 h for all initiators. For two initiators the temperature was also lowered to 115 ◦C. Even-numbered chains were predominantly formed in all polymerizations at short times, but the rate of transesterification (e.g. even/odd equilibration) and the molecular weight distribution were found to depend significantly on the nature of the initiator. Observed transesterification reactions also continued in solid poly (L-lactide), and with the most active initiator, almost total equilibration was achieved even at 130 ◦C. This means that all chains including those of the crystallites were involved in transesterification reactions proceeding across the flat surfaces of the crystallites. The more or less equilibrated crystalline polylactides were characterized by DSC and SAXS measurements with regard to their melting temperature (Tm), crystallinity and crystal thickness. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Catalysts KW - SAXS PY - 2021 DO - https://doi.org/10.1016/j.eurpolymj.2021.110508 VL - 153 SP - 110508 PB - Elsevier Ltd. AN - OPUS4-52633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed ROPs of L-lactide initiated by acidic OH- compounds: Switching from ROP to polycondensation and cyclization JF - Journal of Polymer Science A: Polymer Chemistry N2 - Ring-opening polymerizations (ROPs) of L-lactide are performed in bulk at 130°C with tin(II) 2-ethylhexanoate as catalyst and various phenols of differentacidity as initiators. Crystalline polylactides having phenyl ester end groups are isolated, which are almost free of cyclics. The dispersities and molecular weights are higher than those obtained from alcohol-initiated ROPs under identical conditions. Polymerizations at 160°C yield higher molecular weights than expected from the monomer/initiator ratio and a considerable fraction of cycles. The fraction of cycles increases with higher reactivity of the ester end group indicating that the cycles are formed by end-to-end cyclization. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540250 DO - https://doi.org/10.1002/pol.20210823 SN - 2642-4150 VL - 60 IS - 5 SP - 785 EP - 793 PB - Wiley AN - OPUS4-54025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - What does conversion mean in polymer science? JF - Macromolecular Chemistry and Physics N2 - The definition of the term “conversion” is discussed for a variety of polymer syntheses. It is demonstrated that in contrast to organic and inorganic chemistry several different definitions are needed in polymer science. The influence of increasing conversion on structure and topology of homo- and Copolymers is illustrated. Chain-growth polymerizations, such as radical polymerization or living anionic polymerizations of vinyl monomers, condensative chain polymerization, two and three-dimensional step-growth polymerizations, ring–ring or chain–chain equilibration and chemical modification of polymers are considered. KW - Polymers KW - Polymerization KW - Conversion KW - Polycondensation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523597 DO - https://doi.org/10.1002/macp.202100010 VL - 222 IS - 8 SP - 10 PB - Wiley VCH AN - OPUS4-52359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -