TY - JOUR A1 - Mechichi, R. A1 - Chabbah, T. A1 - Chatti, S. A1 - Jlalia, I. A1 - Sanglar, Corinne A1 - Casablanca, H. A1 - Vulliet, E. A1 - Marestin, C. A1 - Mercier, R. A1 - Weidner, Steffen A1 - Errachid, A. A1 - Hammani, M. A1 - Jaffrezic-Renault, N. A1 - Abderrazak, H. T1 - Semi‑interpenetrating Network‑Coated Silica Gel Based on Green Resources for the Efcient Adsorption of Aromatic Pollutants from Waters N2 - In the framework of the development of green analytical chemistry, a silica gel (SG) coated with a semi-penetrating network based on the partially biosourced poly(ethersulfone) is studied for a greener extraction process of aromatic organic pollutants. An optimized composition of the semi-penetrating network (80% of the linear polymer (LP): isosorbide-based poly(ethersulfone) and 20% cross-linking agent (XP) type bismaleimide) leads to a total adsorption of the selected aromatic pollutants, whatever their hydrophilicity. Adsorption characteristic, kinetics and isotherms of the SG-semi-INP LP80/XP20 for p-hydroxybenzoic acid and for toluic acid were studied. Langmuir model led to a better ftting of the adsorption isotherms; the adsorption of toluic acid is easier than that of p-hydroxybenzoic acid. 1/n values of benzoic acid was lower for SGsemi-INP LP80/XP20 compared to biochar and to cross-linked methacrylate resin, showing a higher adsorption efciency. KW - Isosorbide KW - Semi-interpenetrating networks KW - Silica gel modification KW - Aromatic pollutants KW - Adsorption PY - 2022 U6 - https://doi.org/10.1007/s42250-022-00463 SN - 2522-5758 SP - 1 EP - 18 PB - Springer AN - OPUS4-55720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -