TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen T1 - Copolyesters of lactide, isosorbide, and terephthalic acid-biobased, biodegradable, high-Tg engineering plastics N2 - Various copolyesters of lactide, isosorbide, and terephthalic acid are prepared by a two-step process performed in a 'one-pot' procedure, beginning with an isosorbide-initiated oligomerization of L-lactide followed by polycondensation with terephthaloyl chloride using SnCl2 as a catalyst for both steps. The SEC data show the formation of random copolyesters with high polydispersities as a consequence of the relatively high fraction of cyclics proved by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The glass-transition temperatures (89–180 °C) obey an almost linear trend with the molar composition. The thermostability decreases with increasing lactide content. The successful incorporation of phenyl phosphate results in copolyesters of lower inflammability. KW - Biodegradability KW - Cyclization KW - Isosorbide KW - Polycondensation KW - Ring-opening polymerization PY - 2013 U6 - https://doi.org/10.1002/macp.201200612 SN - 1022-1352 SN - 1521-3935 VL - 214 IS - 6 SP - 726 EP - 733 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-28171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen T1 - High Tg copolyesters of lactide, isosorbide and isophthalic acid N2 - Using SnCl2, ZnCl2, Zn-lactate or Zr-acetylacetonate as catalysts ʟ-lactide was oligomerized in bulk with isosorbide as initiator. The ratio isosorbide/lactide was varied from 8/2 to 2/8. The resulting oligomers were in situ polycondensed with isophthaloyl chloride in various aromatic solvents. In chlorobenzene homogeneous reaction mixtures were obtained, whereas molten copolyesters precipitated from toluene and xylene. The obtained average molecular weights indicated high polydispersities. According to MALDI-TOF MS the low molar mass reaction products (<4 kDa) almost exclusively consisted of cyclics with a composition depending on the feed ratio. The glass-transition temperatures (Tg) varied between the values of poly(ʟ-lactide (64 °C) and poly(isosorbide isophthalate) (180 °C). Four polyesters prepared from 5-tert-butyl isophthalic acid displayed higher Tg values. Differential thermoanalysis evidenced that the thermostability decreases with higher fractions of lactide, but processing from the melt seems to be feasible up to temperatures of 260 °C without risking degradation. KW - Lactide KW - Isosorbide KW - Ring-opening polymerization KW - Polycondensation KW - Cyclization PY - 2013 U6 - https://doi.org/10.1016/j.eurpolymj.2013.05.007 SN - 0014-3057 SN - 1873-1945 VL - 49 IS - 8 SP - 2293 EP - 2302 PB - Elsevier CY - Oxford AN - OPUS4-29014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Scheliga, F. A1 - Kricheldorf, H.R. T1 - Low-temperature polymerization of epsilon-caprolactone catalyzed by cerium triflates N2 - Using 22 metal triflates as catalysts, ε-caprolactone is polymerized at 22 °C in bulk. Only five relatively acidic triflates prove active. Three triflates, including the neutral Sm3+, are active using water as initiator. A very low content of cyclics is found in all the experiments. With Ce3+ and Ce4+, polymerizations are performed in CH2Cl2 and in bulk at 2 °C and 22 °C. Low dispersities (down to 1.1) are obtained. At 22 °C, Ce4+ and, even better, Ce3+ also catalyze syntheses of CO2H- and CH2OH-terminated polycaprolactones, whereby higher dispersities and larger fractions of cyclics are obtained. Further polymerizations and polycondensations are catalyzed with protic acids. The results can be explained by a proton-catalyzed activated monomer mechanism. KW - Epsilon-caprolactone KW - Cyclization KW - Metal triflates KW - Polycondensation KW - Ring-opening polymerization PY - 2013 U6 - https://doi.org/10.1002/macp.201300279 SN - 1022-1352 SN - 1521-3935 VL - 214 IS - 18 SP - 2043 EP - 2053 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Poly(Epsilon-caprolactone) by combined ring-opening polymerization and azeotropic polycondensation - the role of cyclization and equilibration N2 - Using three different catalysts, water-initiated polymerizations of ε-caprolactone were conducted in bulk with variation of the monomer/water ratio. The resulting CH2OH and CO2H- terminated polylactones were subjected in situ to azeotropic polycondensations. With Bi-triflate and temperatures, the polycondensations were not much successful and involved side reactions. With ZnCl2, and especially SnCl2, considerably higher molar masses were achieved. The substitution of toluene for chlorobenzene for refluxing gave better results. The polycondensations broadened the molar mass distribution of the ROP-based prepolymers, and polydispersities between 1.4–1.8 were obtained. The MALDI–TOF mass spectra revealed that the polycondensations significantly enhanced the fraction of rings due to efficient 'end-biting' reactions. By comparison with copolymerization experiments and Sn methoxide-initiated polymerizations, it was demonstrated that equilibration reactions, such as the formation of rings by 'back-biting,' did not occur. KW - Ring-opening polymerization KW - Epsilon-caprolactone (e-CL) KW - Cyclization KW - MALDI-TOF mass spectrometry KW - Polycondensation KW - Polyesters PY - 2012 U6 - https://doi.org/10.1002/pola.26222 SN - 0360-6376 SN - 0887-624X VL - 50 IS - 20 SP - 4206 EP - 4214 PB - Wiley CY - Hoboken, NJ AN - OPUS4-26500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lahcini, M. A1 - Qayouh, H. A1 - Yashiro, T. A1 - Weidner, Steffen A1 - Kricheldorf, H.R. T1 - Bismuth-triflate-catalyzed polymerizations of epsilon-caprolactone N2 - εCL was polymerized using the triflates of lanthanum, samarium, magnesium, aluminum, scandium, and bismuth as catalysts. Bismuth triflate proved to be extraordinarily reactive, and catalyzed polymerizations of εCL even at 20 °C. Adding DTBMP reduced the polymerization rate only slightly. Furthermore, no evidence of a cationic mechanism was found by end‐group analyses. Polymerization at 20 °C either in bulk or in solution only yielded polyesters of low or medium molecular weights. Yet addition of alcohols allowed for a proper control of molecular weight and end‐groups. Additionally, low catalyst concentrations and low temperature resulted in narrow molecular weight distributions and polylactones almost free of cyclic compounds. KW - Bismuth KW - Epsilon-caprolactone KW - Ring-opening polymerization KW - Telechelic polyesters PY - 2011 U6 - https://doi.org/10.1002/macp.201000517 SN - 1022-1352 SN - 1521-3935 VL - 212 IS - 6 SP - 583 EP - 591 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-23514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -