TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Alcohol-Initiated and SnOct2-Catalyzed Ring-Opening Polymerization (ROP) of L-Lactide in Solution: A Re-investigation N2 - Alcohol-initiated ring-opening polymerizations (ROP) of L-lactide (LA) were studied in solution at 70 °C, whereupon the nature of the alcohol, the LA/initiator ratio, the LA/SnOct2 ratio and the time were varied. In contrast to literature, neat SnOct2 is catalytically active in THF and several aromatic but donor solvents, such as 1,3-dioxolane, dimethylformamide (DMF) or N-methyl pyrrolidone (NMP), strongly reduce the activity of SnOct2. In agreement with literature, no cycles were formed by neat SnOct2 at 70 °C in toluene, whereas almost complete cyclization occurs at 115 °C. This finding is attributed to strongly reduced mobility of the initially formed linear chains having one Sn-O-CH and one anhydride end group. Due to better solvation and enhanced mobility cyclization occurs in THF at 70 °C. KW - Polylactide KW - Ring-opening polymerization KW - MALDI-TOF MS KW - Transesterification PY - 2023 U6 - https://doi.org/10.1016/j.eurpolymj.2023.111822 SN - 0014-3057 SP - 1 EP - 18 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-56818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - SnOct2-catalyzed and alcohol-initiated ROPS of L-lactide - Control of the molecular weight and the role of cyclization N2 - Ring-opening polymerizations (ROP) of l-lactide (LA) are conducted in bulk at 130, 160, or 180 °C and are initiated with two different alcohols at 160 °C. The lactide/initiator ratio (LA/In) is varied from 50/1 (20/1 at 180 °C) to 900/1 and the lactide/catalyst ratio (LA/Cat) between 2000/1 and 8000/1. At all temperatures a nearly perfect control of number average molecular weight (Mn) via the LA/In ratio is feasible up to LA/In = 200/1, but at higher ratios the Mn value lags behind the theoretical values and the discrepancy increases with higher LA/Cat ratios. Variation of the LA/Cat ratio influences the formation of cycles but does not significantly influence Mn, when the LA/In ratio is kept constant. The formation of cycles is favored by lower In/Cat ratios and is the main reason for the unsatisfactory control of Mn at high LA/In ratios. The results also suggest that the cycles are mainly or exclusively formed by end-to-end cyclization and not, as believed previously, by back-biting. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Ring-opening polymerization PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543066 SN - 1521-3935 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - ROP of L-lactide and ε-caprolactone catalyzed by tin(ii) and tin(iv) acetates–switching from COOH terminated linear chains to cycles N2 - The catalytic potential of tin(II)acetate, tin(IV)acetate, dibutyltin-bis-acetate and dioctyl tin-bis-acetate was compared based on polymerizations of L-lactide conducted in bulk at 160 or 130C. With SnAc2 low-Lac/Cat ratios (15/1–50/1) were studied and linear chains having one acetate and one carboxyl end group almost free of cyclics were obtained. Higher monomer/catalyst ratios and lower temperatures favored formation of cycles that reached weight average molecular weights (Mw's) between 100,000 and 2,500,000. SnAc4 yielded mixtures of cycles and linear species under all reaction conditions. Dibutyltin- and dioctyl tin bis-acetate yielded cyclic polylactides under most reaction conditions with Mw's in the range of 20,000–80,000. Ring-opening polymerizations performed with ε-caprolactone showed similar trends, but the formation of COOH-terminated linear chains was significantly more favored compared to analogous experiments with lactide. The reactivity of the acetate catalysts decreased in the following order: SnAc2> SnAc4>Bu2SnAc2 Oct2SnAc2. KW - Catalyst KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Tin acetates KW - Polylactide PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520831 SP - 1 EP - 12 PB - Wiley Online Library AN - OPUS4-52083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - High Tm linear poly(L-lactide)s prepared via alcohol-initiated ROPs of L-lactide N2 - Alcohol-initiated ROPs of L-lactide were performed in bulk at 160 °C for 72 h with variation of the catalyst or with variation of the initiator (aliphatic alcohols). Spontaneous crystallization was only observed when cyclic Sn(II) compounds were used as a catalyst. Regardless of initiator, high melting crystallites with melting temperatures (Tm) of 189–193 °C were obtained in almost all experiments with Sn(II) 2,2′-dioxybiphenyl (SnBiph) as catalyst, even when the time was shortened to 24 h. These HTm poly(lactide)s represent the thermodynamically most stable form of poly(L-lactide). Regardless of the reaction conditions, such high melting crystallites were never obtained when Sn(II) 2-ethylhexanoate (SnOct2) was used as catalyst. SAXS measurements evidenced that formation of HTm poly(L-lactide) involves growth of the crystallite thickness, but chemical modification of the crystallite surface (smoothing) seems to be of greater importance. A hypothesis, why the “surface smoothing” is more effective for crystallites of linear chains than for crystallites composed of cycles is discussed. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524330 VL - 11 IS - 23 SP - 14093 EP - 14102 PB - Royal Society of Chemistry AN - OPUS4-52433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - High molecular weight poly(l-lactide) via ring-opening polymerization with bismuth subsalicylate-The role of cocatalysts N2 - The catalytic potential of bismuth subsalicylate (BiSub), a commercial drug, for ring-opening polymerization (ROP) of L-lactide was explored by variation of co-catalyst and polymerization time. Various monofunctional phenols or carboxylic acids, aromatic ortho-hydroxy acids and diphenols were examined as potential co-catalysts. 2,2´-Dihydroxybiphenyl proved to be the most successful co-catalyst yielding weight average molecular weights (uncorrected Mw values up to 185 000) after optimization of reaction time and temperature. Prolonged heating (>1-2h) depending on catalyst concentration) caused thermal degradation. In polymerization experiments with various commercial Bi(III) salts a better alternative to BiSub was not found. By means of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry a couple of unusual and unexpected transesterification reactions were discovered. Finally, the effectiveness of several antioxidants and potential catalyst poisons was explored, and triphenylphosphine was found to be an effective catalyst poison. KW - Polylactide KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Bismuth PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519513 SN - 0021-8995 VL - 138 IS - 19 SP - 50394 PB - Wiley AN - OPUS4-51951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen T1 - About the influence of salicylic acid on tin(II)octanoate-catalyzed ring opening polymerizationof L-lactide N2 - L-Lactide was polymerized in bulk with tin(II)2-ethylhexanoate SnOct2) as catalyst and salicylic acid as cocatalyst. The Lac/Cat ratio, Cocat/Cat ratio, temperature and time were varied. Increasing Cocat/Cat ratios reduced both,polymerization rate and molecular weight. However,under optimized conditions high molar mass (Mw up to 178,000), colorless, cyclic polylactides were formed in a short time. A few polymerizations performed at 160 and 180°C with the combination of SnOct2 and silylated salicylic acid gave similar results. Neat tin II) salicylate was prepared from SnOct2 and used for REPs of L-lactide in bulk, but the results were not better than those obtained from combinations of SnOct2 and salicylic acid. Furthermore, dibutyltin salicylate was synthesized and used as catalyst for polymerizations of L-lactide in bulk at temperatures varying from 102 to 160°C. Cyclic polylactides with Mw’s up to 40,000 were the main reaction products. At 100–102°C a predominance of odd-numbered cycles was found proving a REP mechanism. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Ring-opening polymerization PY - 2019 U6 - https://doi.org/10.1016/j.eurpolymj.2019.07.003 VL - 119 SP - 37 EP - 44 PB - Elsevier Ltd. AN - OPUS4-49211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Spirocyclic bisphenoxides of Ge, Zr, and Sn as catalysts for ring-expansion polymerizations of L- and meso-lactide N2 - Spirocyclic phenoxides of germanium, zirconium, and tin were prepared from 2,20-dihydroxybiphenyl and 2,20-dihydroxy-1,10-binaphthyl. Ring-expansion polymerizations of L-lactide are mainly studied at 160 or 180 °C. The reactivity of the catalysts increases in the order: Zr < Ge < Sn. Regardless of catalyst, the weight-average molecular weights (Mw) never exceed 50,000 g mol−1. The resulting poly(L-lactide)s are optically pure and have a cyclic architecture. Decreasing temperature and time favor Formation of even-numbered cycles, and at 102 ° cyclics, almost free of odd-numbered rings are obtained. Analogous polymerizations of meso-lactide give similar results >120 °C, but different results at 100 or 80 °C. Surprisingly, bell-shaped narrow molecular weight distributions are obtained <140 °C, resembling the pattern of living polymerizations found for alcohol-initiated polymerizations. An unusual transesterification mechanism yielding narrow distributions of odd-numbered cycles is discovered too. KW - Cyclization KW - Polylactides KW - MALDI-TOF MS KW - Ring-opening polymerization KW - Spirocyclic PY - 2018 U6 - https://doi.org/10.1002/pola.29259 SN - 0887-624X SN - 1099-0518 VL - 56 IS - 24 SP - 2730 EP - 2738 PB - Wiley Periodicals AN - OPUS4-46498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - About formation of cycles in Sn(II) octanoate-catalyzed polymerizations of lactides N2 - At first, formation of cycles in commercial poly(Llactide)s is discussed and compared with benzyl alcoholinitiated polymerizations performed in this work. This comparison was extended to polymerizations initiated with 4-cyanophenol and pentafluorothiophenol which yielded cyclic polylactides via end-biting. The initiator/catalyst ratio and the acidity of the initiator were found to be decisive for the extent of cyclization. Further polymerizations of L-lactide were performed with various diphenols as initiators/co-catalysts. With most diphenols, cyclic polylactides were the main reaction products. Yet, only catechols yielded even-numbered cycles as main reaction products, a result which proves that their combination with SnOct2 catalyzed a ring-expansion polymerization (REP). The influence of temperature, time, co-catalyst, and catalyst concentrations was studied. Four different transesterification reactions yielding cycles were identified. For the cyclic poly(L-lactide)s weight average molecular weights (Mw’s) up to 120,000 were obtained, but 1H NMR end group analyses indicated that the extent of cyclization was slightly below 100%. The influence of various parameters like structure of Initiator and catalyst and temperature on the formation of cyclic poly(Llactide)s has been investigated. Depending on the chosen conditions, the course of the polymerization can be varied from a process yielding exclusively linear polylactides to mainly cyclic polylactides. Three different reaction pathways for cyclization reactions have been identified. KW - Cyclization KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization KW - Transesterification PY - 2018 U6 - https://doi.org/10.1002/pola.29077 SN - 0887-624X VL - 56 IS - 17 SP - 1915 EP - 1925 PB - Wiley Periodicals Inc. AN - OPUS4-46052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Cyclic poly(l-lactide) via ring-expansion polymerization by means of dibutyltin 4-tert-butylcatecholate N2 - Five new catalysts are prepared from dibutyltin oxide and catechol (HCa), 2,3-dihydroxynaphthalene (NaCa), 4-tert-butyl catechol (BuCa), 4-cyano catechol (CyCa), and 4-benzoyl catechol (BzCa), but only BuCa gives useful results. When benzyl alcohol is used as an initiator, linear chains having benzyl ester end groups are formed in a slow polymerization process. In contrast to cyclic or noncyclic dibutyltin bisalkoxides, neat BuCa yields cyclic poly(l-lactide)s via a fast ring-expansion polymerization. Under certain conditions, a high-melting crystalline phase (Tm = 191 °C) is obtained. At 160 °C and short reaction times even-numbered cycles are slightly prevailing, but, surprisingly, at 120 °C, odd-numbered cycles are predominantly formed. These results definitely prove that a ring-expansion mechanism is operating. KW - Lactides KW - MALDI TOF MS KW - Morphology KW - Ring-opening polymerization KW - Tin catalysts PY - 2017 U6 - https://doi.org/10.1002/macp.201700274 SN - 1521-3935 SN - 1022-1352 VL - 218 IS - 22 SP - 1700274, 1 EP - 1700274, 10 PB - Wiley VCH CY - Weinheim AN - OPUS4-43583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic Polylactides via Simultaneous Ring-Opening Polymerization and Polycondensation Catalyzed by Dibutyltin Mercaptides N2 - L-Lactide is polymerized in bulk at 160 8C either with dibutyltin bis(benzylmercaptide) (SnSBzl), dibutyltin bis(benzothiazole 2-mercaptide) (SnMBT), or with dibutyltin bis(pentafluorothiophenolate) (SnSPF) as catalysts. SnSBzl yields linear polylactides having benzylthio-ester end groups in addition to cyclic polylactides, whereas SnMBT and SnSPF mainly or exclusively yield cyclic polylactides. This finding, together with model reactions, indicates that the SnS catalysts promote a combined ring-opening polymerization and polycondensation process including end-to-end cyclization. SnMBT caused slight racemization (3%–5%), when used at 160 8C. With SnSPF optically pure cyclic poly(L-lactide)s with high-molecular weights can be prepared at 160 8C. KW - Cyclopolymerization KW - Catalysts KW - MALDI-TOF MS KW - Polyester KW - Ring-opening polymerization PY - 2017 U6 - https://doi.org/10.1002/pola.28762 VL - 55 IS - 22 SP - 3767 EP - 3775 PB - Wiley Periodicals AN - OPUS4-42600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -