TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Imaging mass spectrometry for examining localization of polymeric composition in matrix-assisted laser desorption/ionization samples N2 - The localization of polymeric composition in samples prepared for matrix-assisted laser desorption/ionization (MALDI) analysis has been investigated by imaging mass spectrometry. Various matrices and solvents were used for sample spot preparation of a polybutyleneglycol (PBG 1000). It was shown that in visibly homogeneous spots, prepared using the dried droplet method, separation between matrix and polymer takes place. Moreover, using -cyano-4-hydroxycinnamic acid (CCA) as matrix and methanol as solvent molecular mass separation of the polymer homologues in the spots was detectable. In contrast to manually spotted samples, dry spray deposition results in homogeneous layers showing no separation effects. KW - Imaging KW - MALDI TOF Massenspektrometrie KW - Polymere PY - 2009 U6 - https://doi.org/10.1002/rcm.3919 SN - 0951-4198 SN - 1097-0231 VL - 23 IS - 5 SP - 653 EP - 660 PB - Wiley CY - Chichester AN - OPUS4-19622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - LC-MALDI-TOF imaging MS: a new approach in combining chromatography and mass spectrometry of copolymers N2 - A new approach that utilizes MALDI-TOF imaging mass spectrometry as a new detector for polymer chromatography is presented. For the first time, the individual retention behavior of single structural units of polyethylene oxide (PEO)/polypropylene oxide (PPO) copolymers and changes of the copolymer composition could be monitored. Composition specific calibration curves could be easily obtained by displaying the copolymer ion intensity data. This approach provides completely new insights in the chromatographic principle of copolymer separation and could be used to easily modify and adapt conditions for separation. In combination with electrospray deposition, homogeneous sample/matrix traces of surprisingly high spatial resolution could be obtained. KW - MALDI KW - Massenspektrometrie KW - Imaging KW - Chromatographie KW - Polymere PY - 2011 U6 - https://doi.org/10.1021/ac202380n SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 23 SP - 9153 EP - 9158 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Schultze, R.-D. A1 - Enthaler, B. T1 - Matrix-assisted laser desorption/ionization imaging mass spectrometry of pollen grains and their mixtures N2 - RATIONALE The fast and univocal identification of different species in mixtures of pollen grains is still a challenge. Apart from microscopic evaluation and Raman spectroscopy, no other techniques are available. METHODS Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was applied to the analysis of extracts of single pollen grains and pollen mixtures. Pollen grains were fixed, treated and covered with matrix directly on the MALDI target. RESULTS Clearly resolved MALDI ion intensity images could be obtained enabling the identification of single pollen grains in a mixture. CONCLUSIONS Our results demonstrate the potential and the suitability of MALDI imaging mass spectrometry as an additional method for the identification of pollen mixtures. KW - MALDI KW - Imaging KW - Pollen KW - Blends PY - 2013 U6 - https://doi.org/10.1002/rcm.6523 SN - 0951-4198 SN - 1097-0231 VL - 27 IS - 8 SP - 896 EP - 903 PB - Wiley CY - Chichester AN - OPUS4-27986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -