TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen A1 - Scheliga, F. A1 - Lahcini, M. T1 - Poly(epsilon-caprolactone) by combined ring-opening polymerization and polycondensation N2 - Numerous water-initiated polymerizations of εCL are conducted in bulk with variation of catalyst, reaction time, and temperature. The conversions are determined by 1H NMR and the molar masses by SEC measurements. For polymerizations at 100 °C, Bi triflate and Hf triflate are used as catalysts, whereas at 140 °C, Al triflate, Sn(II) triflate, SnCl2, HfCl4, BiCl3, and LaCl3 are used. In addition to a closed reaction vessel, experiments are also performed with stirring in a vacuum. Under these conditions, the best catalyst (SnCl2) yields 2–3 times higher molar masses and mass spectra indicate a significant higher fraction of cyclic polymers. The results prove that a modification of the procedure may stimulate a polycondesation process without change of catalyst, time, and temperature. KW - Epsilon-Caprolactone KW - Cyclization KW - MALDI-TOF mass spectrometry KW - Polycondensations KW - Ring-opening polymerizations PY - 2012 U6 - https://doi.org/10.1002/macp.201200061 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 14 SP - 1482 EP - 1488 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Scheliga, F. A1 - Kricheldorf, H.R. T1 - Low-temperature polymerization of epsilon-caprolactone catalyzed by cerium triflates N2 - Using 22 metal triflates as catalysts, ε-caprolactone is polymerized at 22 °C in bulk. Only five relatively acidic triflates prove active. Three triflates, including the neutral Sm3+, are active using water as initiator. A very low content of cyclics is found in all the experiments. With Ce3+ and Ce4+, polymerizations are performed in CH2Cl2 and in bulk at 2 °C and 22 °C. Low dispersities (down to 1.1) are obtained. At 22 °C, Ce4+ and, even better, Ce3+ also catalyze syntheses of CO2H- and CH2OH-terminated polycaprolactones, whereby higher dispersities and larger fractions of cyclics are obtained. Further polymerizations and polycondensations are catalyzed with protic acids. The results can be explained by a proton-catalyzed activated monomer mechanism. KW - Epsilon-caprolactone KW - Cyclization KW - Metal triflates KW - Polycondensation KW - Ring-opening polymerization PY - 2013 U6 - https://doi.org/10.1002/macp.201300279 SN - 1022-1352 SN - 1521-3935 VL - 214 IS - 18 SP - 2043 EP - 2053 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Poly(Epsilon-caprolactone) by combined ring-opening polymerization and azeotropic polycondensation - the role of cyclization and equilibration N2 - Using three different catalysts, water-initiated polymerizations of ε-caprolactone were conducted in bulk with variation of the monomer/water ratio. The resulting CH2OH and CO2H- terminated polylactones were subjected in situ to azeotropic polycondensations. With Bi-triflate and temperatures, the polycondensations were not much successful and involved side reactions. With ZnCl2, and especially SnCl2, considerably higher molar masses were achieved. The substitution of toluene for chlorobenzene for refluxing gave better results. The polycondensations broadened the molar mass distribution of the ROP-based prepolymers, and polydispersities between 1.4–1.8 were obtained. The MALDI–TOF mass spectra revealed that the polycondensations significantly enhanced the fraction of rings due to efficient 'end-biting' reactions. By comparison with copolymerization experiments and Sn methoxide-initiated polymerizations, it was demonstrated that equilibration reactions, such as the formation of rings by 'back-biting,' did not occur. KW - Ring-opening polymerization KW - Epsilon-caprolactone (e-CL) KW - Cyclization KW - MALDI-TOF mass spectrometry KW - Polycondensation KW - Polyesters PY - 2012 U6 - https://doi.org/10.1002/pola.26222 SN - 0360-6376 SN - 0887-624X VL - 50 IS - 20 SP - 4206 EP - 4214 PB - Wiley CY - Hoboken, NJ AN - OPUS4-26500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-Expansion Polymerization of 𝝐-Caprolactone, Glycolide, and l-lactide with a Spirocyclic Tin(IV) Catalyst Derived from or 2,2′-Dihydroxy-1,1′-Binaphthyl – New Results and a Revision N2 - In contrast to other cyclic tin bisphenoxides, polymerizations of glycolide and l-lactide with the spirocyclic tin(IV) bis-1,1′-bisnapthoxide yield linear chains having a 1,1′-bisnapthol end group and no cycles. In the case of l-lactide, LA/Cat ratio and temperature are varied and at 160 °C or below, all polylactides mainly consist of even-numbered chains. A total predominance of even-numbered chains is also found for homopolymerization of glycolide, or the copolymerization of glycolide and l-lactide, when conducted <120 °C. Linear chains having a bisnaphthol end group are again the main reaction products of ring-expansion polymerizations (REP) of 𝝐-caprolactone, but above 150 °C cycles are also formed. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-541931 VL - 222 IS - 24 SP - 1 EP - 10 PB - Wiley VCH GmbH AN - OPUS4-54193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - SnOct2-catalyzed and alcohol-initiated ROPS of L-lactide - Control of the molecular weight and the role of cyclization N2 - Ring-opening polymerizations (ROP) of l-lactide (LA) are conducted in bulk at 130, 160, or 180 °C and are initiated with two different alcohols at 160 °C. The lactide/initiator ratio (LA/In) is varied from 50/1 (20/1 at 180 °C) to 900/1 and the lactide/catalyst ratio (LA/Cat) between 2000/1 and 8000/1. At all temperatures a nearly perfect control of number average molecular weight (Mn) via the LA/In ratio is feasible up to LA/In = 200/1, but at higher ratios the Mn value lags behind the theoretical values and the discrepancy increases with higher LA/Cat ratios. Variation of the LA/Cat ratio influences the formation of cycles but does not significantly influence Mn, when the LA/In ratio is kept constant. The formation of cycles is favored by lower In/Cat ratios and is the main reason for the unsatisfactory control of Mn at high LA/In ratios. The results also suggest that the cycles are mainly or exclusively formed by end-to-end cyclization and not, as believed previously, by back-biting. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Ring-opening polymerization PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543066 SN - 1521-3935 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-opening polymerizations of L-Lactide catalyzed by zinc caprylate: Syntheses of cyclic and linear poly(L-lactide)s N2 - Alcohol-initiated ring-opening polymerizations (ROPs) of L-Lactide (LA) were conducted in bulk at 130 °C catalyzed by Zn acetate (ZnAc2), lactate (ZnLac2), or caprylate (ZnCap2). 11-undecenol (UND), 1-hydroxymethylnaphtalene (HMN), and 4-nitrobenzylalcohol (4NB) were used as alcohols. Whereas variation of the alcohols had little effect, the usefulness of the catalysts increased in the order: acetate < lactate < caprylate. Hence, further alcohol-initiated polymerizations were performed with ZnCap2 alone and with variation of the lactide/catalyst (LA/Cat) ratio. With increasing LA/Cat ratio higher fractions of cyclic poly(L-lactide) (PLA) were found, so that the measured degree of polymerization (DP) is considerably lower than the theoretical value (i.e., 2 x LA/alcohol). With neat ZnCap2 cyclic PLAs were the largely prevailing reaction products. For these cyclic PLAs weight average molar masses (Mw) up to 134,000 were obtained and an optical purity around 99% was indicated by 13C NMR spectroscopy and DSC measurements even after 48 h at 150 or 160 °C. KW - Cyclization KW - Lactide KW - Ring opening polymerization KW - Transesterification KW - Zinc catalyst KW - MALDI PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-557565 SN - 2642-4150 SP - 1 EP - 10 PB - Wiley AN - OPUS4-55756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lahcini, M. A1 - Weidner, Steffen A1 - Oumayama, J. A1 - Scheliga, F. A1 - Kricheldorf, H. R. T1 - Unsaturated Copolyesters of Lactide N2 - Four classes of unsaturated copolyesters of L-lactide were prepared either from isosorbide or bis(hydroxymethyl)tricyclodecane in combination with fumaric acid or from 1,4-butenediol or 1,4- butynediol with terephthalic acid. All syntheses were performed in such a way that lactide was oligomerized with a diol as the initiator and the resulting oligomers were polycondensed with a dicarboxylic acid dichloride either in a one-pot synthesis or in a two-step procedure. For most copolyesters the SEC measurements gave weight average molecular weights in the range of 30–60 kg mol⁻1 and dispersities in the range of 4.2–6.2. The MALDI-TOF mass spectra displayed a high content of cycles and indicated an irreversible kinetic course of all polycondensations. Glass-transition temperatures (Tg) above 90 °C were only found for two copolyesters of isosorbide. Addition of bromine to copolyesters of 1,4-butenediol yielded flame retarding biodegradable polymers. KW - Copolyester KW - MALDI-TOF MS KW - SEC KW - Lactide PY - 2016 U6 - https://doi.org/10.1039/c6ra16008e VL - 2016/6 IS - 96 SP - 93496 EP - 93504 PB - Royal Society of Chemistry AN - OPUS4-37913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H.R. A1 - Scheliga, F. T1 - Cyclization and dispersity of poly(alkylene isophthalate)s N2 - Poly(alkylene isophthalate)s were prepared by different methods, either in solution or in bulk. The SEC measurements were evaluated in such a way that all oligomers were included. In solution (monomer conc. 0.1–0.7 mol/L) large fractions of rings were formed and high dispersities (up to 12) were obtained, which disagree with theoretical predictions. Polycondensations in bulk did neither generate cyclics by 'back-biting' nor by end-to-end cyclization, when the maximum temperature was limited to 210 °C. The dispersities of these perfectly linear polyesters were again higher than the theoretical values. Regardless of the synthetic method monomeric cycles were never observed. Furthermore, SEC measurements performed in tetrahydrofuran and in chloroform and SEC measurements performed in three different institutes were compared. Finally, SEC measurements of five samples were performed with universal calibration and a correction factor of 0.71 ± 0.02 was found for normal calibration with polystyrene. KW - Cyclization KW - Polycondensation KW - Polyesters KW - Size exclusion chromatography KW - Cyclics KW - Dispersity KW - SEC KW - Universal calibration KW - MALDI mass spectrometry PY - 2016 U6 - https://doi.org/10.1002/pola.27892 SN - 0360-6376 SN - 0887-624X VL - 54 IS - 1 SP - 197 EP - 208 PB - Wiley CY - Hoboken, NJ AN - OPUS4-33731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic polymers and flaws of the Jacobson–Stockmayer theory N2 - Cyclic poly(L-lactide)s were prepared by ring-opening polymerization combined with simultaneous polycondensation (ROPPOC) in bulk at 160 ° with dibutyltin bis(4-cyanophenoxide) as catalyst. It is demonstrated by MALDI TOF mass spectrometry and 1H NMR end group analyses that cycles are formed by endto-end cyclization in addition to “back-biting” transesterification. Formation of high molar mass cyclic poly L-lactide)s by means of several more reactive ROPPOC catalysts presented previously and in new experiments is discussed. These experimental results, together with theoretical arguments, prove that part of the Jacobson–Stockmayer theory is wrong. The critical monomer concentration, above which end-toend cyclization is seemingly impossible, does not exist and reversible like irreversible polycondensations can theoretically proceed up to 100% conversion, so that finally all reaction products will necessarily adopt a cyclic architecture. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506419 VL - 11 IS - 14 SP - 2595 EP - 2604 PB - Royal Society for Chemistry AN - OPUS4-50641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Synthesis of cyclic poly(l-lactide) catalyzed by Bismuth salicylates-A combination of two drugs N2 - l‐lactide was polymerized in bulk at 160 or 180°C with mixtures of bismuth subsalicylate (BiSub) and salicylic (SA) as catalysts. The SA/Bi ratio and the monomer/Bi ratio were varied. The highest molecular weights (weight average, Mw) were achieved at a SA/Bi ratio of 1/1 (Mw up to 92 000 g mol−1). l‐Lactide was also polymerized with combinations of BiSub and silylated SA, and Mw values up to 120 000 g mol−1 were achieved at 180°C. MALDI‐TOF mass spectrometry and Mark‐Houwink‐Sakurada measurements proved that under optimized reaction conditions the resulting polylactides consist of cycles. KW - Polylactide KW - MALDI-TOF MS KW - Cyclization KW - Catalyst KW - Salicylate PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-488622 SN - 0887-624X SN - 1099-0518 SP - 29473 PB - Wiley AN - OPUS4-48862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -