TY - JOUR A1 - Trimpin, S. A1 - Lee, C. A1 - Weidner, Steffen A1 - El-Baba, T. A1 - Lutomski, C. A1 - Inutan, E. A1 - Foley, C. A1 - Ni, C.-K. A1 - McEwen, C. T1 - Unprecedented Ionization Processes in Mass SpectrometryProvide Missing Link between ESI and MALDI JF - ChemPhysChem N2 - In the field of mass spectrometry,producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from bio-medical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser Ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around athird of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorp-tion/ionization. KW - MALDI KW - Electrospray KW - Mass spectrometry KW - Ionization PY - 2018 DO - https://doi.org/10.1002/cphc.201701246 SN - 1439-4235 SN - 1439-7641 VL - 19 IS - 5 SP - 581 EP - 589 PB - Wiley-VCH AN - OPUS4-44404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - The Role of Transesterification in SnOct 2 - Catalyzed Polymerizations of Lactides JF - Macromolecular Chemistry and Physics N2 - l-lactide or meso-lactide are polymerized either at 120 °C where the polymerization process of l-lactide is accompanied by crystallization, or at 180 °C where poly(l-lactide) remains in the molten state. Polymerizations at 120 °C initially yield even-numbered chains (with respect to lactic acid units) having relatively low dispersity, but the fraction of odd-numbered chains increases with time and the entire molecular weight distribution changes. Traces of cyclics are only formed after 7 d. Polymerizations at 180 °C yield equilibrium of even and odd-numbered chains from the beginning, but at low monomer/initiator ratios and short reaction times (<4 h) cyclics are again not formed. They appear at longer reaction times and entail higher dispersities. The results are discussed in terms of five different transesterification mechanisms. KW - Polylactides KW - MALDI KW - Transesterification KW - Sn catalysts PY - 2017 DO - https://doi.org/10.1002/macp.201600331 SN - 1022-1352 VL - 218 IS - 3 SP - 1600331 PB - Wiley AN - OPUS4-39753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhao, J. A1 - Schlaad, H. A1 - Weidner, Steffen A1 - Antonietti, M. T1 - Synthesis of terpene-poly(ethylene oxide)s by t-BuP4-promoted anionic ring-opening polymerization JF - Polymer chemistry N2 - Terpene alcohols (menthol, retinol, cholesterol, and betulin) together with the phosphazene base t-BuP4 were used as initiating systems for anionic ring-opening polymerization of ethylene oxide. The polymerizations were conducted in a controlled manner with the initial molar ratio of t-BuP4 to hydroxyl groups of 0.01–0.2, yielding a series of biohybrid polymers comprising terpene entities and poly(ethylene oxide) (PEO) chains with low polydispersities and tunable compositions (57–87 wt% of PEO). Samples were characterized by NMR and UV/visible spectroscopy, MALDI-TOF mass spectrometry, and size exclusion chromatography; thermal properties were studied by differential scanning calorimetry. The concept of this study opens a new toolbox of terpene-based biohybrid polymers with variable properties and functions. KW - ROMP KW - MALDI KW - Amphiphilic polymers KW - Polyethylene oxide PY - 2012 DO - https://doi.org/10.1039/c1py00388g SN - 1759-9954 SN - 1759-9962 VL - 3 IS - 7 SP - 1763 EP - 1768 AN - OPUS4-26026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the preparation of pollen grains for MALDI-TOF MS classification JF - International Journal of Molecular Sciences N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - MALDI KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment KW - Principal component analysis PY - 2017 DO - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 SN - 1661-6596 VL - 18 IS - 3 SP - 543-1 EP - 543-11 PB - MDPI AN - OPUS4-41733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-opening polymerizations of L-Lactide catalyzed by zinc caprylate: Syntheses of cyclic and linear poly(L-lactide)s JF - Journal of Polymer Science A: Polymer Chemistry N2 - Alcohol-initiated ring-opening polymerizations (ROPs) of L-Lactide (LA) were conducted in bulk at 130 °C catalyzed by Zn acetate (ZnAc2), lactate (ZnLac2), or caprylate (ZnCap2). 11-undecenol (UND), 1-hydroxymethylnaphtalene (HMN), and 4-nitrobenzylalcohol (4NB) were used as alcohols. Whereas variation of the alcohols had little effect, the usefulness of the catalysts increased in the order: acetate < lactate < caprylate. Hence, further alcohol-initiated polymerizations were performed with ZnCap2 alone and with variation of the lactide/catalyst (LA/Cat) ratio. With increasing LA/Cat ratio higher fractions of cyclic poly(L-lactide) (PLA) were found, so that the measured degree of polymerization (DP) is considerably lower than the theoretical value (i.e., 2 x LA/alcohol). With neat ZnCap2 cyclic PLAs were the largely prevailing reaction products. For these cyclic PLAs weight average molar masses (Mw) up to 134,000 were obtained and an optical purity around 99% was indicated by 13C NMR spectroscopy and DSC measurements even after 48 h at 150 or 160 °C. KW - Cyclization KW - Lactide KW - Ring opening polymerization KW - Transesterification KW - Zinc catalyst KW - MALDI PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557565 DO - https://doi.org/10.1002/pol.20220328 SN - 2642-4150 SP - 1 EP - 10 PB - Wiley AN - OPUS4-55756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Weidner, Steffen A1 - Lahcini, M. T1 - Multicyclic polyesters of trimesic acid and alkanediols and the theory of network formation JF - Macromolecular chemistry and physics N2 - Trimesoyl chloride is polycondensed with various alpha,omega'-alkanediols in dichloromethane at different concentrations using equifunctional feed ratios. As evidenced by MALDI-TOF (matrix assisted laser desorption/ionization-time of flight) mass spectrometry the soluble reaction products mainly consist of perfect multicyclic oligomers and polymers. The solphase extracted from the gels also consists of perfect multicycles. SEC (size exclusion chromatography) measurements show that both soluble reaction products and extracted solphases also contain a high molar mass fraction of perfect and nonperfect multicycles extending up to masses beyond 10 5 g mol-1. When the polycondensation is stopped after a few minutes perfect multicycles are already detectable in the reaction mixture along with functional (multi)cyclic oligomers. These results prove that at initial monomer concentrations < 0.2 mol L-1 networks and large multicyclic polymers are synthesized from functional cyclic oligomers formed in early stages of the polycondensation and not from hyperbranched polymers. This interpretation is presented as 'egg-first theory' and compared with the 'hen-first theory' of Stockmayer and Flory. KW - a2 + b3 polycondensation KW - Cyclization KW - MALDI KW - Multicyclic polymers KW - Networks PY - 2015 DO - https://doi.org/10.1002/macp.201500245 SN - 1022-1352 SN - 1521-3935 VL - 216 IS - 21 SP - 2095 EP - 2106 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-35282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Schultze, R.-D. A1 - Enthaler, B. T1 - Matrix-assisted laser desorption/ionization imaging mass spectrometry of pollen grains and their mixtures JF - Rapid communications in mass spectrometry N2 - RATIONALE The fast and univocal identification of different species in mixtures of pollen grains is still a challenge. Apart from microscopic evaluation and Raman spectroscopy, no other techniques are available. METHODS Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was applied to the analysis of extracts of single pollen grains and pollen mixtures. Pollen grains were fixed, treated and covered with matrix directly on the MALDI target. RESULTS Clearly resolved MALDI ion intensity images could be obtained enabling the identification of single pollen grains in a mixture. CONCLUSIONS Our results demonstrate the potential and the suitability of MALDI imaging mass spectrometry as an additional method for the identification of pollen mixtures. KW - MALDI KW - Imaging KW - Pollen KW - Blends PY - 2013 DO - https://doi.org/10.1002/rcm.6523 SN - 0951-4198 SN - 1097-0231 VL - 27 IS - 8 SP - 896 EP - 903 PB - Wiley CY - Chichester AN - OPUS4-27986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, J.L. A1 - Lutomski, C.A. A1 - El-Baba, T.J. A1 - Siriwardena-Mahanama, B.N. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Allen, M. J. A1 - Trimpin, S. T1 - Matrix-assisted ionization-ion mobility spectrometry-mass spectrometry: Selective analysis of a europium-PEG complex in a crude mixture JF - Journal of the American society for mass spectrometry N2 - The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed. KW - Matrix-assisted ionization ion mobility spectrometry mass spectrometry KW - Europium KW - Poly(ethylene glycol) KW - Size-exclusion chromatography KW - Liquid chromatography at critical conditions KW - Electrospray ionization KW - Matrix-assisted laser desorption/ionization KW - Inductively coupled plasma-mass spectrometry KW - ESI KW - MALDI KW - SEC PY - 2015 DO - https://doi.org/10.1007/s13361-015-1233-8 SN - 1044-0305 VL - 26 IS - 12 SP - 2086 EP - 2095 PB - Elsevier CY - New York, NY AN - OPUS4-35283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gabriel, Stefan A1 - Schwarzinger, C. A1 - Schwarzinger, B. A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Matrix segregation as the major cause for sample inhomogeneity in MALDI dried droplet spots JF - Journal of the American society for mass spectrometry N2 - The segregation in dried droplet MALDI sample spots was analyzed with regard to the matrix-to-sample ratio using optical microscopy, MALDI imaging mass spectrometry (MALDI MSI) and IR imaging spectroscopy. In this context, different polymer/matrix/solvent systems usually applied in the analysis of synthetic polymers were investigated. The use of typical matrix concentrations (10 mg mL-1) in almost every case resulted in ring patterns, whereas higher concentrated matrix solutions always led to homogeneous sample spot layers. The data revealed that segregation is predominantly caused by matrix transport in the drying droplet, whereas polymer segregation seems to be only secondary. KW - MALDI KW - Imaging MS KW - Matrix segregation KW - Dried droplet KW - Sample preparation KW - Polymers PY - 2014 DO - https://doi.org/10.1007/s13361-014-0913-0 SN - 1044-0305 VL - 25 IS - 8 SP - 1356 EP - 1363 PB - American Society for Mass Spectrometry CY - New York, NY AN - OPUS4-32582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Weidner, Steffen ED - Matyjaszewski, K. ED - Möller, M. T1 - Mass spectrometry: MALDI (Matrix-Assisted Laser Desorption/Ionization) and ESI (Electrospray Ionization) T2 - Polymer Science: A comprehensive reference N2 - In recent years mass spectrometric methods, in particular matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) time-of-flight (TOF) mass spectrometry (MS) have become indispensable tools for analyzing molecular masses and mass distributions of polymers. Moreover, these techniques offer the advantage of being able to determine simultaneously chemical functionality, and compositional and topological distributions of polymers. Especially in combination with liquid and/or gas phase separation methods, a comprehensive polymer characterization can be achieved and the difficulties of MS to analyze chemically heterogeneous polymers, copolymers, and samples with broad molecular mass distribution can be overcome. KW - MALDI KW - ESI KW - Polymere KW - Electrospray ionization KW - Mass spectrometry KW - Matrix-assisted laser desorption/ionization KW - Tandem MS KW - Time of flight PY - 2012 SN - 978-0-444-53349-4 DO - https://doi.org/10.1016/B978-0-444-53349-4.00023-6 VL - 2 IS - Chapter 2.05 SP - 93 EP - 109 PB - Elsevier CY - Amsterdam AN - OPUS4-26098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -