TY - JOUR A1 - Thomas, Maximilian A1 - Vollert, F. A1 - Weidemann, Jens A1 - Gibmeier, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Surface- and volume-based investigation on influences of different Varestraint testing parameters and chemical compositions on solidification cracking in LTT filler metals JF - Welding in the World N2 - The subject of this study is how, and to what extent, Varestraint/Transvarestraint test results are influenced by both testing parameters and characteristics of evaluation methods. Several different high-alloyed martensitic LTT (low Transformation temperature) filler materials, CrNi and CrMn type, were selected for examination due to their rather distinctive solidification cracking behaviour, which aroused interest after previous studies. First, the effects of different process parameter sets on the solidification cracking response were measured using standard approaches. Subsequently, microfocus X-ray computer tomography (μCT) scans were performed on the specimens. The results consistently show sub-surface cracking to significant yet varying extents. Different primary solidification types were found using wavelength dispersive X-ray (WDX) analysis conducted on filler metals with varying Cr/Ni equivalent ratios. This aspect is regarded as the main difference between the CrNiand CrMn-type materials in matters of cracking characteristics. Results show that when it comes to testing of modern highperformance alloys, one set of standard Varestraint testing parameters might not be equally suitable for all materials. Also, to properly accommodate different solidification types, sub-surface cracking has to be taken into account. KW - Solidification cracking KW - Varestraint testing KW - MVT KW - LTT filler metal KW - Microfocus X-ray computer tomography (μCT) PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506039 DO - https://doi.org/10.1007/s40194-020-00895-2 VL - 64 SP - 913 EP - 923 PB - Springer Nature CY - Heidelberg, New York AN - OPUS4-50603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gibmeier, J. A1 - Weidemann, Jens A1 - Dixneit, Jonny A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Influence of structural stiffness on the residual stresses during welding of low transformation temperature alloys T2 - Mathematical Modelling of Weld Phenomena 11 N2 - Low Transformation Temperature (LTT) alloys are high alloyed filler materials, which exhibit a martensitic phase transformation at comparatively low temperatures in order to prevent high tensile residual stresses. A number of publications have already shown that even compressive residual stresses can be observed when using LTT filler materials. Up to know it is not clear in which way this it applicable to multi-run welding exhibiting high shrinkage restraint and complex heat input. In this study the potential for stress reduction during welding of LTT alloys was studied by numerical simulation. This allows for evaluation of the stress development in every single weid run. Additionally, the impact of the structural stiffness was incorporated by modelling a special sample geometry exhibiting a high intensity of restraint. The results show that the stress formation in weid longitudinal direction is determined by the phase transformation as high compressive residual stresses were found here independent from the weid run. On the other hand the transformation induced stresses in weid transverse direction are superimposed by tensile stresses originated from shrinkage restraint. With increasing number of runs the tensile residual stress level is raised. The results were confirmed by residual stress measurements using diffraction methods. T2 - 11th International Seminar - Numerical Analysis of Weldability CY - Graz, Austria DA - 27.09.2015 KW - Influence KW - Structural stiffness KW - Residual stresses KW - Low transformation KW - Temperature alloys KW - Welding PY - 2016 SN - 978-3-85125-490-7 SN - 2410-0544 SP - 259 EP - 276 PB - Verlag der Technischen Universität Graz CY - Graz AN - OPUS4-38998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -