TY - CONF A1 - Wehrstedt, Klaus-Dieter T1 - Klassifizierung, Umgang und Lagerung explosiver und reaktionsfähiger Stoffe T2 - Fachkonferenz "Gefahrgut" im Rahmen der 4. Deutsch-Chinesischen Konferenz zur Umsetzung des Aktionsplans "Grüne Logistik" CY - Berlin DA - 2015-11-11 PY - 2015 AN - OPUS4-34787 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knechtel, Sophie A1 - Schmidt, Simon A1 - Mishra, K. B. A1 - Wehrstedt, Klaus-Dieter T1 - Modellierung der Hauptbrandszenarien von flüssigem Wasserstoff (LH2) mittels CFD N2 - Die sichere Lagerung und der Transport von Flüssigwasserstoff (LH2) verlangen nach verlässlichen Abschätzungen möglicher Risiken durch Feuer oder Explosion. Aufgrund des breiten Explosionsbereichs (4 Vol.-% - 74 Vol.-%) reagiert Wasserstoff sehr schnell und produziert hohe Flammentemperaturen. Da Wasserstoffflammen ruß- bzw. farblos sind, ist Wärmestrahlung im Fernfeld kein Risikofaktor. Allerdings stellen die hohe lokale Wärmestrahlung und die nicht sichtbaren Flammen eine Gefahr für Menschen und Infrastruktur in der Nähe dar. Es ist daher notwendig die Gefahren von LH2-Feuern sorgfältig zu bewerten. Einerseits sind experimentelle Untersuchungen verschiedener Szenarien teuer, andererseits können sie teilweise auch praktisch nicht durchführbar sein. Numerische Simulationen dieser Szenarien können ein Ausweg aus diesem Problem sein. In der vorliegenden Arbeit wird ein solcher Ansatz genutzt, um große Brandszenarien mit LH2 mittels CFD (Computational Fluid Dynamics) zu modellieren und so die notwendigen Sicherheitsabstände abzuschätzen. Der Fokus liegt dabei auf der Simulation von Jet- und Pool-Feuerszenarien mit einem kommerziellen CFD-Code (Ansys CFX). Die benötigten geometrischen Modelle werden für Jet- und Pool-Feuer erstellt und mit den nötigen Randbedingungen implementiert. Wichtige Submodelle für chemische Reaktionen (Einschritt- und detaillierte Modelle), Verbrennung (Eddy-Dissipation- und Flamelet-Modell) und Strahlung (Discrete-Transfer-Modell) werden genutzt. Die maximal simulierten Flammentemperaturen liegen bei ~2100 K für Jet-Feuer und ~2300 K für Pool-Feuer. Um Aussagen zu thermischen Sicherheitsabständen zu treffen, wurden die Spezifischen Ausstrahlungen (SEP) ermittelt und anschließend entsprechende Positionsfaktoren gewählt, um verlässliche Sicherheitsabstände zu berechnen. Je nach Bedarf können CFD-Modelle sowohl für qualitative als auch für quantitative Risikobewertungen von LH2-Großbränden genutzt werden. T2 - 12. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 05.11.2015 KW - Flüssigwasserstoff KW - Großbrand KW - Poolfeuer KW - Jet-Feuer KW - CFD KW - Sicherheitsabstand PY - 2015 SN - 978-3-86011-091-1 SP - Paper P-11, 1 EP - 8 AN - OPUS4-34827 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Martin A1 - Wehrstedt, Klaus-Dieter A1 - Seifert, Alexander A1 - Bulin, Michael T1 - Sicherheitstechnische Kenngrößen brennbarer Stäube in Datenbanken - Besonderheiten, Anwendungsgrenzen, Bandbreiten N2 - Während die Gefahr von Explosionen dort besteht, wo Stäube aufgewirbelt vorliegen, bergen abgelagerte Stäube das Risiko von Bränden. Die Beurteilung daraus entstehender Gefahren und das Auslegen von vorbeugenden und konstruktiven Schutzmaßnahmen erfolgt über sicherheitstechnische Kenngrößen (STK). Diese lagen bislang in Datenbanken nur in Einzelwerten vor und wurden nun zu Gruppen zusammengefasst. Das Besondere daran: Erstmals werden nun bewertete Bandbreiten angegeben, in denen sich die STK der Stäube bewegen. KW - Brennbare Stäube KW - Kenngrößen KW - Staubexplosionen KW - Brände PY - 2015 SN - 0946-7939 VL - 21 IS - 2 SP - 56 EP - 60 PB - Vogel Trans Tech Publications CY - Würzburg AN - OPUS4-33119 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - Underground gas pipeline explosion and fire: CFD based assessment of foreseeability N2 - Scenarios of underground gas pipeline failure, crater formation, dispersion of gas, explosion and subsequent fires are investigated with semi-empirical and with CFD (Computational Fluid Dynamics) modelling. In order to strengthen the accident based learning approaches present investigations are performed in the context of recent GAIL (Gas Authority of India Limited) natural gas pipeline incident occurred in India. The foreseeability of damages to lives of people and assets due to explosion overpressure and thermal radiation are assessed. The released gas is considered as slightly dense-than-air i.e. 1.5 times. Depending on the LFL (Lower Flammability Limit) of gas the dispersion diameter and heights are predicted which followed the visual evidences appropriately. The model was furthermore tested with an even denser medium and was found to be worked well there too. The estimated explosion overpressures with the standard methods and also with CFD reproduced the scenario nicely. The effects of congestion VBR (Volume Blockage Ratio) in form of vegetation on stable atmospheric boundary layer flow is analysed and its contribution towards turbulence and hazard enhancement is studied. It is found that the major source of fatalities was higher thermal radiation emitted by pool fires of methane. The estimated thermal safety distances clearly demonstrate the ignorance/under estimation of likelihood and consequence of such hazardous events. For such incidents CFD demonstrated a strong capability to assess the pre or/and post events foreseeabilities within a reasonable amount of time and with an acceptable level of accuracy meeting the industrial needs for risk analysis. KW - Natural gas KW - Underground pipeline KW - Dense gas dispersion KW - Explosion and fire KW - CFD KW - Safety distance PY - 2015 DO - https://doi.org/10.1016/j.jngse.2015.04.010 SN - 1875-5100 VL - 24 SP - 526 EP - 542 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-33671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Simon A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - CFD simulations to predict the thermal safety distances from jet fires of peroxy-fuels N2 - CFD (Computational Fluid Dynamics) simulations have been carried out to investigate the behavior of turbulent, subsonic jet fires of the peroxy-fuel Di-tert-butyl peroxide (DTBP) using the SAS-SST turbulence model, the discrete transfer radiation model, the eddy dissipation combustion model and the Magnussen soot model. Safety relevant parameters, such as flame length, temperature and thermal radiation are predicted to give recommendations on safety distances. T2 - 4. Magdeburger Brand- und Explosionsschutztag / 3. vfdb-Workshop Brandschutzforschung CY - Magdeburg, Germany DA - 26.03.2015 KW - CFD simulations KW - Thermal safety distances KW - Jet fires KW - Peroxy-fuels PY - 2015 SN - 978-3-00-048960-0 SP - 1 EP - 12 AN - OPUS4-33283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehrstedt, Klaus-Dieter T1 - Die Explosionskatastrophe von Tianjin 2015 - eine Analyse N2 - Am 12. August 2015 kam es in einem Containerlager im Hafen von Tianjin (China) zu einer Serie von Explosionen wobei 173 Menschen getötet und 797 verletzt wurden (Feuerwehrleute und andere Personen). Die ersten beiden Explosionen ereigneten sich innerhalb von 30 Sekunden. Die zweite Explosion war wesentlich heftiger und beruhte u. a. auf der detonativen Umsetzung von ca. 800 Tonnen Ammoniumnitrat. Nach einem Untersuchungsbericht der chinesischen Behörden (Februar 2016) war die Ursache eine Überhitzung eines Containers mit Nitrocellulose-Produkten. Zusammen mit Kollegen von der Nanjing University of Science and Technology arbeiteten Kollegen der Abteilung 2 an der Analyse der Gründe für die Explosionen und deren Verlauf basierend auf den Kenntnissen und Erfahrungen bezüglich der Eigenschaften der involvierten Stoffe, insbesondere Ammoniumnitrat und Nitrocellulose, sowie der potentiellen Mechanismen für die Auslösung und Weiterleitung. Beschrieben werden die in Umgang, insbesondere die Lagerung, von Ammoniumnitrat und Nitrocellulose-Produkten. T2 - Besuch einer chinesischen Delegation zu Arbeitssicherheit in Kooperation mit der Europa Akademie e.V. CY - Berlin, Germany DA - 14.11.2016 KW - Ammoniumnitrat KW - Cellulosenitrat Nitrozellulose KW - Lagerung KW - Explosion KW - Detonation KW - Schutzabstände KW - Gefahrgüter KW - Gefahrstoffe PY - 2016 AN - OPUS4-39100 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehrstedt, Klaus-Dieter A1 - Wilrich, Cordula T1 - Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen N2 - BAM Abteilung „Chemische Sicherheitstechnik“, das Global harmonisierte System zur Einstufung und Kennzeichnung von Chemikalien (UN GHS: United Nations Globally Harmonized System of Classification, Labelling and Packaging of Chemicals), die Verordnung über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen (CLP steht für die Abkürzung der englischen Begriffe classification, labelling and packaging), die Verordnung zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe. (REACH: Registration, Evaluation, Authorization and Restriction of Chemicals). T2 - Besuch einer chinesischen Delegation zu Arbeitssicherheit in Kooperation mit der Europa Akademie e.V. CY - Berlin, Germany DA - 14.11.2016 KW - Einstufung und Kennzeichnung von Chemikalien KW - UN GHS KW - CLP-Verordnung KW - REACH KW - Physikalische Verfahren PY - 2016 AN - OPUS4-39101 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehrstedt, Klaus-Dieter A1 - Sen, X. A1 - Dabin, L. A1 - Krebs, Holger T1 - Die Explosionskatastrophe von Tianjin 2015 N2 - Am 12. August 2015 kam es in einem Containerlager im Hafen von Tianjin (China) zu einer Serie von Explosionen wobei 173 Menschen getötet und 797 verletzt wurden (Feuerwehrleute und andere Personen). Die ersten beiden Explosionen ereigneten sich innerhalb von 30 Sekunden. Die zweite Explosion war wesentlich heftiger und beruhte u. a. auf der detonativen Umsetzung von ca. 800 Tonnen Ammoniumnitrat. Nach einem Untersuchungsbericht der chinesischen Behörden (Februar 2016) war die Ursache eine Überhitzung eines Containers mit Nitrocellulose-Produkten. Zusammen mit Kollegen von der Nanjing University of Science and Technology arbeiteten Kollegen der Abteilung 2 an der Analyse der Gründe für die Explosionen und deren Verlauf basierend auf den Kenntnissen und Erfahrungen bezüglich der Eigenschaften der involvierten Stoffe, insbesondere Ammoniumnitrat und Nitrocellulose, sowie der potentiellen Mechanismen für die Auslösung und Weiterleitung. Beschrieben werden die in Umgang, insbesondere die Lagerung, von Ammoniumnitrat und Nitrocellulose-Produkten. T2 - 16. Euroforum-Jahrestagung "Chemie- und Industrieparks" CY - Frankfurt/Main, Germany DA - 08.11.2016 KW - Ammoniumnitrat KW - Cellulosenitrat Nitrozellulose KW - Lagerung KW - Explosion KW - Detonation KW - Schutzabstände KW - Gefahrgüter KW - Gefahrstoffe KW - Vorschriften in Deutschland PY - 2016 AN - OPUS4-39102 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehrstedt, Klaus-Dieter A1 - Sen, X. A1 - Dabin, L. A1 - Krebs, Holger T1 - Die Explosionskatastrophe von Tianjin 2015 – Analyse und Bewertung N2 - Am 12. August 2015 kam es in einem Containerlager im Hafen von Tianjin (China) zu einer Serie von Explosionen wobei 173 Menschen getötet und 797 verletzt wurden (Feuerwehrleute und andere Personen). Die ersten beiden Explosionen ereigneten sich innerhalb von 30 Sekunden. Die zweite Explosion war wesentlich heftiger und beruhte u. a. auf der detonativen Umsetzung von ca. 800 Tonnen Ammoniumnitrat. Nach einem Untersuchungsbericht der chinesischen Behörden (Februar 2016) war die Ursache eine Überhitzung eines Containers mit Nitrocellulose-Produkten. Zusammen mit Kollegen von der Nanjing University of Science and Technology arbeiteten Kollegen der Abteilung 2 an der Analyse der Gründe für die Explosionen und deren Verlauf basierend auf den Kenntnissen und Erfahrungen bezüglich der Eigenschaften der involvierten Stoffe, insbesondere Ammoniumnitrat und Nitrocellulose, sowie der potentiellen Mechanismen für die Auslösung und Weiterleitung. Beschrieben werden die in Umgang, insbesondere die Lagerung, von Ammoniumnitrat und Nitrocellulose-Produkten. T2 - Besuch einer chinesischen Delegation CY - Bonn, Germany DA - 16.11.2016 KW - Ammoniumnitrat KW - Cellulosenitrat Nitrozellulose KW - Lagerung KW - Explosion KW - Detonation KW - Schutzabstände KW - Gefahrgüter KW - Gefahrstoffe PY - 2016 AN - OPUS4-39103 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, K. B. A1 - Wehrstedt, Klaus-Dieter A1 - Krebs, Holger T1 - Prediction of overpressure in buried gas pipeline explosions N2 - The explosion and fire incidents with buried gas pipelines are increasing globally e.g. San Bruno (USA, 2010), East Godavari (India, 2014) and Ludwigshafen (Germany, 2014) are only a few to quote. There are a number of parameters involved behind the occurrence of these incidents such as human mistake, intended efforts leading to major or minor leak, explosion due to depressurization, crater formation, spill of gaseous fuel in the nearby regions and pool/jet/crater fires. In continuation to [3] these parameters are investigated for Ludwigshafen incident in the present work. The semi-empirical and advanced CFD (Computational Fluid Dynamics) based models are utilized to assess the damages caused by the explosion overpressures. Recommendations are also provided on minimum safety distance to be considered for such pipelines to avoid/foresee/mitigate similar hazards in future. T2 - 5. Brand- und Explosionsschutztage 2017 CY - Magdeburg, Germany DA - 23.03.2017 KW - Buried gas pipeline KW - Explosion KW - Overpressure KW - CFD-Model KW - Safety distance PY - 2017 SN - 978-3-00-056201-3 DO - https://doi.org/10.978.300/0562013 SP - 1 EP - 8 AN - OPUS4-40193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -