TY - GEN A1 - King, M.J. A1 - Iacobucci, P.A. A1 - Mak, W.A. A1 - Wehrstedt, Klaus-Dieter T1 - Report about the IGUS EOS meeting 2011 in Washington, D.C. N2 - IGUS is the International Group of Experts on the Explosion Risks of Unstable Substances. IGUS was established in 1962 with the objective to harmonize test methods used by different countries to identify and quantify the explosive properties of unstable materials. Over the years, IGUS has continued to offer scientists, who are advisers to their governments, and others, a forum to exchange data and information. The Energetic and Oxidizing Substances (EOS) working group as a sub-group of IGUS is dealing with test methods, Classification and safety aspects relating to organic peroxides, self-reactive substances and other energetic substances, fertilizers, ammonium nitrate and oxidizers. The EOS working group holds an annual meeting alternating between Europe, the United States and Japan. The 2011 meeting took place from the 27th to the 29th of April 2011 at the Madison Hotel in Washington, D. C. The meeting was hosted by the Organic Peroxide Producers Safety Division (OPPSD) of the Society of Plastics Industry, Inc. (SPI). This was the fourth EOS meeting held in the USA since 1994. Of particular importance is the fact that 39 colleagues from authorities, universities, research institutes and industries attended the meeting. The delegates came from USA, Canada, China, France, The Netherlands, Norway, Sweden, Italy, Japan, United Kingdom and Germany. This confirms the breadth and scope of this forum and the value the participants associate with being able to contact other colleagues from around the world enabling the effective exchange of scientific results and discussion on the wide-ranging Problems concerning energetic and oxidizing materials. T2 - IGUS EOS Meeting 2011 CY - Washington D.C., USA DA - 27.04.2011 KW - IGUS KW - EOS KW - Organic peroxides KW - Self-reactive substances KW - Test methods KW - Oxidizers KW - Round robin test PY - 2011 SP - 1 EP - 4 AN - OPUS4-26364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter A1 - Schönbucher, A. T1 - Interpretations of temperature measurements in organic peroxide pool fires T2 - 5th European combustion meeting 2011 -ECM- (Proceedings) N2 - Most of the measurements of temperatures in large pool fires are indirect and present a number of complexities due to the interactions of convection, radiation and soot blockage. In the present work these influences for two organic peroxide [tert-butyl peroxybenzoate (TBPB) and tert-butyl peroxy-2-ethylhexanoate (TBPEH)] pool fires are analysed. Thermocouple measured temperature in the clear flame zone i.e. combustion zone are found to be 250-400 K lower than from the thermographic measurements. The convective and radiative heat flux contributions from the fire on temperature measurements are discussed. CFD (Computational Fluid Dynamics) simulations have been performed for large pool fires and the predicted time averaged flame temperatures were found to be in qualitative agreement with measurements due to the stoichiometric combustion model used in the present simulations. T2 - 5th European combustion meeting 2011 CY - Cardiff, UK DA - 28.06.2011 KW - Pool fire KW - Organic peroxides KW - TBPB KW - TBPEH KW - CFD KW - Temperature measurement PY - 2011 UR - http://www.uni-due.de/tchem/as/skripte/paper_mishra_et_al_cardiff_2011.pdf SP - 1 EP - 5 AN - OPUS4-24686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schälike, Stefan A1 - Wehrstedt, Klaus-Dieter A1 - Schönbucher, A. T1 - CFD simulation to predict the thermal radiation of large LNG pool fires T2 - 5th European combustion meeting 2011 -ECM- (Proceedings) N2 - Flame temperature (T), surface emissive power (SEP) of Liquefied Natural Gas (LNG) pool fires (d = 1 m, 6.1 m, 30 m) are investigated by CFD (Computational Fluid Dynamics) simulation and compared with experimental results. Time averaged flame temperatures of T = 1320 K, T = 1298 K and T = 1281 K are obtained. Surface emissive power (SEP) of 55 kW=m2, 130 kW=m2 and 230 kW=m2 are predicted. T2 - 5th European combustion meeting 2011 CY - Cardiff, UK DA - 28.06.2011 KW - Pool fire KW - LNG KW - CFD KW - Thermal radiation KW - Surface emissive power PY - 2011 SP - 1 EP - 6 AN - OPUS4-24687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - An efficient and clean fuel for high temperature process industries T2 - 11th Conference on energy for a clean environment N2 - The use of energetic materials as a main fuel in high temperature process industries are not known to the scientific community as such. This paper highlights some of the features and advantages of using organic peroxides especially di-tert-butyl peroxide (DTBP) in high temperature process industries. The feasibility of using DTBP as a main or supporting fuel in process industries have also been justified with the help of Computational Fluid Dynamics (CFD) simulations. For peroxides requirement of less fuel and air for the same amount of heat flux has been shown. The resulted emission from the combustion of DTBP is also discussed. T2 - 11th Conference on Energy for a Clean Environment CY - Lisbon, Portugal DA - 2011-07-05 KW - Energetic materials KW - Process industries KW - Organic peroxide KW - Di-tert-butylperoxide (DTBP) KW - CFD simulation KW - Emission PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-247071 SP - 1 EP - 10 AN - OPUS4-24707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - Combustion of peroxy-fuels T2 - ERCOFTAC conference - Highly resolved experimental and numerical diagnostics for turbulent combustion -HRTC-1- (Proceedings) N2 - The diffusion flames of organic peroxides exhibit quite different characteristics than hydrocarbons. What makes them interesting to study is their fast burning behaviour. As a result the flame temperature enhances and so does the thermal radiation. Due to all these they demand safe handling during processing. However, they can be utilised at several places in different industries where a fuel with fast burning, high temperature and intense radiation are desired. Some of the possibilities to use them as a main or supporting fuel in a wide range of industrial utilities are the major content of this paper. T2 - ERCOFTAC conference - Highly resolved experimental and numerical diagnostics for turbulent combustion CY - Rouen, France DA - 25.05.2011 KW - Energetic materials KW - Process industries KW - Organic peroxide KW - Di-tert-butyl peroxide (DTBP) KW - CFD simulation KW - Emission PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-247083 SP - 1 EP - 5 AN - OPUS4-24708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehrstedt, Klaus-Dieter A1 - Horn, J. T1 - IGUS: An example of good international laboratory co-operation T2 - Sitzung des DECHEMA Arbeitsausschusses "Reaktionstechnik sicherheitstechnisch schwieriger Prozesse" T2 - Sitzung des DECHEMA Arbeitsausschusses "Reaktionstechnik sicherheitstechnisch schwieriger Prozesse" CY - Leuna, Germany DA - 2011-09-14 PY - 2011 AN - OPUS4-24328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - Burner for peroxy-fuels (PEROXY-BAM Burner) T2 - VDI-Berichte - 25. Deutscher Flammentag - Verbrennung und Feuerung N2 - A new burner concept (PEROXY-BAM®) for the combustion of liquid organic peroxides (Peroxy-fuels) is presented. As peroxy-fuels are thermally unstable the design of burners for them should be accordingly modified ensuring a safe operation. It is found that 10 to 100 time less amounts of peroxy fuels are required for the same heat flux or output in comparison to hydrocarbons. Correspondingly, the fuel pump power and the volume of combustion chamber (furnace) are also reduced. As a result of less amount of fuel the emissions will also be stepped down and oxygen in the molecule helps to establish conditons like in an oxy-fuel combustion process. The advantages of using peroxy-fuels over hydrocarbons inside a model combustion chamber are also investigated with the help of CFD (Computational Fluid Dynamics) simulations. T2 - 25. Deutscher Flammentag - Verbrennung und Feuerung CY - Karlsruhe, Germany DA - 14.09.2011 KW - Organic peroxide KW - Peroxy-fuel KW - Burner concept KW - Combustion KW - Combustion chamber PY - 2011 SN - 978-3-18-092119-8 SN - 0083-5560 N1 - Serientitel: VDI-Berichte – Series title: VDI-Berichte VL - 2119 SP - 307 EP - 312 PB - VDI-Verl. AN - OPUS4-24388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - CFD simulation to predict the performance of a peroxy-fuel burner T2 - 38th National conference on fluid mechanics and fluid power (Proceedings) N2 - new burner concept for peroxy-fuels is proposed. The performance of the proposed peroxy-fuel burner is predicted with the help of Computational Fluid Dynamics (CFD) simulation. It is found that peroxy-fuel burner not only requires considerable less amount of fuel for the same output/power but also at the same time the overall size of the processing unit can be reduced. As peroxy-fuels contain oxygen atoms within the molecule itself a similar to oxy-fuel combustion environment is created without even supplying pure oxygen. CFD simulations also support the above facts and demonstrate the existence of less favorable conditions to form NOx. T2 - 38th National conference on fluid mechanics and fluid power CY - Bhopal, India DA - 15.12.2011 KW - Burner KW - Peroxy-fuels KW - Performance KW - CFD simulation PY - 2011 IS - Paper HT-07 SP - 1 EP - 6 AN - OPUS4-25380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehrstedt, Klaus-Dieter T1 - Self-reactive Substances Type G - Candidates for Division 4.2 T2 - IGUS Energetic and Oxidising Substances (EOS) Working Groupe Meeting T2 - IGUS Energetic and Oxidising Substances (EOS) Working Groupe Meeting CY - Washington, D.C., USA DA - 2011-04-27 PY - 2011 AN - OPUS4-23578 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehrstedt, Klaus-Dieter T1 - Burning tests on liquid and solid organic peroxides - organic peroxide storage regulations, Part 2: Germany/Europe T2 - IGUS Energetic and Oxidising Substances (EOS) Working Group Meeting T2 - IGUS Energetic and Oxidising Substances (EOS) Working Group Meeting CY - Washington, D.C., USA DA - 2011-04-27 PY - 2011 AN - OPUS4-23579 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -