TY - CONF A1 - Wehrstedt, Klaus-Dieter A1 - Blankenhagel, Paul T1 - Organic peroxide fireballs - Project summary (2016 - 2018) N2 - Final report of research activities at BAM concerning large scale fireballs of organic peroxides (OP). New models for OP fireball diameter, duration, height and Surface Emmissive Power (SEP) are proposed and discussed based on a large number of large-scale and small-scale experiments using Di-tert-butylperoxide (DTBP) as a liquid OP and heptane as a liquid hydrocarbon fuel. Finally, CFD simulations are used to predict the fireball parameters: diameter, duration, height and SEP. Also the impact on the German storage regulations for organic peroxides are discussed. T2 - IGUS EOS Meeting 2019 CY - Brussels, Belgium DA - 21.04.2019 KW - Fireball KW - Organic Peroxide KW - DTBP KW - Thermal Radiation KW - CFD KW - Safety distances PY - 2019 AN - OPUS4-48522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehrstedt, Klaus-Dieter A1 - Blankenhagel, Paul T1 - Organic peroxide fireballs - Report of progress N2 - Summary of recent research activities at BAM concerning large scale fireballs of organic peroxides (OP). Videos of the tests performed in Nanjing, China, are presented. A new model for OP fireball diameter, duration, height and SEP is proposed based on all experiments. In addition, small scale test results using DTBP and heptane are presented. Finally, CFD simulation is used to predict the fireball parameters: diameter, duration and height. T2 - IGUS EOS Meeting CY - Shanghai, China DA - 09.04.2018 KW - Fireball KW - Organic peroxide KW - Thermal radiation KW - Safety distances PY - 2018 AN - OPUS4-45276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schönbucher, A. A1 - Schälike, Stefan A1 - Vela-Wallenschus, Iris A1 - Wehrstedt, Klaus-Dieter ED - Schmidt, J. T1 - CFD simulation of large hydrocarbon and peroxide pool fires T2 - Process and plant safety: applying computational fluid dynamics KW - Pool fire KW - JP 4 KW - Organic peroxide KW - DTBP KW - CFD KW - Surface emissive power KW - Irradiation KW - Safety distances PY - 2012 SN - 978-3-527-33027-0 N1 - Geburtsname von Vela-Wallenschus, Iris: Vela, I. - Birth name of Vela-Wallenschus, Iris: Vela, I. IS - Chapter 9 SP - 139 EP - 157 PB - Wiley-VCH Verlag GmbH & Co. KGaA AN - OPUS4-25897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schälike, Stefan A1 - Vela-Wallenschus, Iris A1 - Wehrstedt, Klaus-Dieter A1 - Schönbucher, A. T1 - Vorhersage der thermischen Strahlung von KW-Poolfeuern mit CFD-Simulation T2 - Workshop Brandschutzforschung T2 - Workshop Brandschutzforschung CY - Magdeburg, Deutschland DA - 2010-10-04 KW - Pool fire KW - Organic peroxides KW - TBPB KW - TBPEH KW - CFD KW - Safety distances PY - 2011 UR - http://www.vfdb.de/download/MagdeburgWorkshop2010/Schaelike_vfdb2010.pdf N1 - Geburtsname von Vela-Wallenschus, Iris: Vela, I. - Birth name of Vela-Wallenschus, Iris: Vela, I. SP - 1 EP - 25 AN - OPUS4-23352 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter A1 - Schönbucher, A. T1 - Numerical prediction of safety distances from large pool fires of organic peroxides JF - 40th International annual conference of ICT N2 - Organic peroxides are energetic substances liable to decompose due to exothermic reactions when exposed to uncontrolled temperature, contamination, confinement and quantity. Their safe storage and transportation are the prime concern and chemical industries and regulating authorities. Their accidental release may and most often lead to shape of a pool. In present study, safety distances from such large pool fires (diameter d = 3.4 m) of organic peroxides are numerically predicted by solving the reactive, 3-D time dependent Navier-Stokes equations with reliable assumptions. The present model is validated against the data on buoyant turbulent diffusion flames. The safety distances predicted by simulation assume three regions in a fully developed fire i.e. hot spot, luminous zone and a flame surface. The time averaged data of temperatures of these regions lead to better estimation of irradiances against the measured data. A developed sphere analogy method (for a special class of organic peroxides) for maximum surface emissive power prediction is also verified. T2 - 40th International annual conference of ICT - Energetic Materials - Characterisation, Modelling and Validation CY - Karlsruhe, Germany DA - 2009-06-23 KW - Organic peroxides KW - Safety distances KW - Navier-stokes equations KW - Irradiance KW - Surface emissive power PY - 2009 SN - 0722-4087 SP - 88-1 - 88-14 PB - DWS Werbeagentur und Verlag GmbH CY - Pfinztal (Berghausen) AN - OPUS4-19599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter A1 - Schönbucher, A. T1 - Safety aspects of organic peroxide pool fires T2 - COMBURA 2010 - Combustion research and application T2 - COMBURA 2010 - Combustion research and application CY - Maastricht, The Netherlands DA - 2010-10-12 KW - Pool fire KW - Organic peroxides KW - TBPB KW - TBPEH KW - CFD KW - Safety distances PY - 2010 SP - 11 EP - 12 AN - OPUS4-22484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter A1 - Krebs, Holger T1 - Boiling liquid expanding vapour explosion (BLEVE) of peroxy-fuels: Experiments and computational fluid dynamics (CFD) simulation JF - Energy procedia N2 - Fire and explosion hazards associated with storage and transportation of flammable materials have been a matter of great interest in the recent times. BLEVE is a scenario that occurs when a closed fuel container is subjected to heat for a longer duration. Such events are disastrous to human beings and assets both. In the past there have been numerous studies on BLEVEs and fireballs of hydrocarbon fuels, e.g. kerosene, gasoline, LPG, LNG and others. Though, the fireballs of peroxy-fuels are not looked into detail as such. This article tries to overcome this lack of knowledge. Both, experimental investigation and CFD simulations are performed to measure and predict the fireball characteristics of a peroxy-fuel. Due to thermal decomposition in the liquid phase and active oxygen content a peroxy-fuel fireball burns at a very fast rate and emit higher thermal radiation whereas exhibits smaller diameter and elevation compared to hydrocarbons. That eventually leads to consideration of larger safety distances from them which are also verified by CFD results. KW - BLEVE KW - Hydrocarbons KW - Peroxy-fuels KW - Safety distances KW - CFD simulation PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-334184 DO - https://doi.org/10.1016/j.egypro.2015.02.082 SN - 1876-6102 VL - 66 SP - 149 EP - 152 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-33418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blankenhagel, Paul A1 - Wehrstedt, Klaus-Dieter A1 - Xu, S. A1 - Mishra, K. B. A1 - Steinbach, J. T1 - A new model for organic peroxide fireballs JF - Journal of Loss Prevention in the Process Industries N2 - Organic peroxides are capable to form fireballs with explosive violence. Only fireball models for liquid hydrocarbon fuels are available for the assessment of the thermal radiation properties. Because the development of such fireballs usually differ from those of organic peroxides the properties need to be characterized by modified equations. In this study liquid organic peroxide fireballs from 16 kg to 155 kg substance masses are characterized and compared to selected existing correlations. Flame characteristics and irradiances are measured with infrared cameras and heat flux sensors. All fireballs are consequences of simulated worst case scenarios where filled steel drums are engulfed by fire with varying heat impact. The differences of the given semi-empirical equations and the presented experimental work are explained. A new model is proposed for organic peroxide fireballs by modifying the constants of the known equations. The thermal radiation impact and safety distances are calculated and compared. KW - Organic peroxide KW - Fireball KW - Thermal radiation KW - Safety distances PY - 2017 DO - https://doi.org/10.1016/j.jlp.2017.10.002 SN - 0950-4230 VL - 50 IS - Part A SP - 237 EP - 242 PB - Elsevier Science AN - OPUS4-43069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blankenhagel, Paul A1 - Wehrstedt, Klaus-Dieter A1 - Steinbach, J. A1 - Mishra, K. B. T1 - Thermal radiation assessment of fireballs using infrared camera JF - Journal of Loss Prevention in the Process Industries N2 - The thermal radiation impact of organic peroxide fireballs is experimentally assessed using an infrared camera. Fireballs are generated while liquid peroxide filled steel drums are subjected to gas burner fire at different heating rates. Three large burning clouds are observed with varying flame characteristics. Thermal radiation properties are assessed by infrared images with the presented methods. Despite of the two-dimensional temperature fields, the flames are treated and characterized as three-dimensional objects. Fireball diameters and heights are calculated based on a representing radiating sphere with the same cloud volume. By the use of the solid flame model and assumptions for emissivity and transmissivity, heat fluxes and thermal radiation doses against distance are predicted. Thermal safety distances are presented based on the maximum irradiance and the allowed exposure time. The validation of the maximum and time-dependent radiation fields is achieved through heat flux sensors in varying distances to the fireball. The results prove the use of an infrared camera and a volume based size calculation to fully assess the thermal radiation hazards of fireballs. KW - Fireball KW - Thermal radiation KW - Infrared camera KW - Organic peroxide KW - Safety distances PY - 2018 DO - https://doi.org/10.1016/j.jlp.2018.04.008 SN - 0950-4230 VL - 54 SP - 246 EP - 253 PB - Elsevier AN - OPUS4-45277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -