TY - JOUR A1 - Burnage, Samual A1 - Bell, Jérémy A1 - Wan, Wei A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Combining a hybrid chip and tube microfluidic system with fluorescent molecularly imprinted polymer (MIP) core–shell particles for the derivatisation, extraction, and detection of peptides with N-terminating phosphorylated tyrosine N2 - The reliable identification and quantitation of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, an area of particular interest when attempting to diagnose and treat diseases at an early stage. We have developed a synthetic probe for targeting phosphorylated amino acids, based on core–shell submicron-sized particles consisting of a silica core, coated with a molecularly imprinted polymer (MIP) shell. The MIP layer contains a fluorescent probe crosslinker which binds selectively to phosphorylated tyrosine (pY) moieties with a significant imprinting factor (IF) and responds with a "light-up” fluorescence signal. The bead-based ratiometric detection scheme has been successfully transferred to a microfluidic chip format and its applicability to rapid assays has been exemplarily shown by discriminating a pY-terminating oligopeptide against its nonphosphorylated counterpart. Such miniaturised devices could lead to an automated pY or pY N-terminated peptide measurement system in the future. The setup combines a modular microfluidic system for amino acid derivatisation, extraction (by micropillar co-flow) and selective adsorption and detection with the fluorescent MIP core–shell particle probes. A miniaturised optical assembly for low-light fluorescence measurements was also developed, based on miniaturised opto-electronic parts and optical fibres. The emission from the MIP particles upon binding of pY or pY N-terminated peptides could be monitored in real-time. KW - Microfluidics KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569204 SN - 1473-0197 VL - 23 IS - 3 SP - 466 EP - 474 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Q. A1 - Shinde, S. A1 - Grasso, G. A1 - Caroli, A. A1 - Abouhany, R. A1 - Lanzillotta, M. A1 - Pan, G. A1 - Wan, Wei A1 - Rurack, Knut A1 - Sellergren, B. T1 - Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles N2 - Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid with a broad range of activities coupled to its role in G-protein coupled receptor signalling. Monitoring of both intra and extra cellular levels of this lipid is challenging due to its low abundance and lack of robust affinity assays or sensors. We here report on fluorescent sensory core-shell molecularly imprinted polymer (MIP) particles responsive to near physiologically relevant levels of S1P and the S1P receptor modulator fingolimod phosphate (FP) in spiked human serum samples. Imprinting was achieved using the tetrabutylammonium (TBA) salt of FP or phosphatidic acid (DPPA·Na) as templates in combination with a polymerizable nitrobenzoxadiazole (NBD)-urea monomer with the dual role of capturing the phospho-anion and signalling its presence. The monomers were grafted from ca 300 nm RAFT-modified silica core particles using ethyleneglycol dimethacrylate (EGDMA) as crosslinker resulting in 10–20 nm thick shells displaying selective fluorescence response to the targeted lipids S1P and DPPA in aqueous buffered media. Potential use of the sensory particles for monitoring S1P in serum was demonstrated on spiked serum samples, proving a linear range of 18–60 μM and a detection limit of 5.6 μM, a value in the same range as the plasma concentration of the biomarker. KW - Molecularly imprinted polymers KW - Phospholipids KW - Fluorescence KW - Dye monomers PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509485 SN - 2045-2322 VL - 10 IS - 1 SP - 9924 PB - Nature Research CY - London AN - OPUS4-50948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Sabine A1 - Zapata, Carlos A1 - Wan, Wei A1 - Gawlitza, Kornelia A1 - Weber, M. A1 - Rurack, Knut T1 - Role of Counterions in Molecularly Imprinted Polymers for Anionic Species N2 - Small-molecule oxoanions are often imprinted noncovalently as carboxylates into molecularly imprinted polymers (MIPs), requiring the use of an organic counterion. Popular species are either pentamethylpiperidine (PMP) as a protonatable cation or tetraalkylammonium (TXA) ions as permanent cations. The present work explores the influence of the TXA as a function of their alkyl chain length, from methyl to octyl, using UV/vis absorption, fluorescence titrations, and HPLC as well as MD simulations. Protected phenylalanines (Z-L/D-Phe) served as templates/analytes. While the influence of the counterion on the complex stability constants and anion-induced spectral changes shows a monotonous trend with increasing alkyl chain length at the prepolymerization stage, the cross-imprinting/rebinding studies showed a unique pattern that suggested the presence of adaptive cavities in the MIP matrix, related to the concept of induced fit of enzyme−substrate interaction. Larger cavities formed in the presence of larger counterions can take up pairs of Z-X-Phe and smaller TXA, eventually escaping spectroscopic detection. Correlation of the experimental data with the MD simulations revealed that counterion mobility, the relative distances between the three partners, and the hydrogen bond lifetimes are more decisive for the response features observed than actual distances between interacting atoms in a complex or the orientation of binding moieties. TBA has been found to yield the highest imprinting factor, also showing a unique dual behavior regarding the interaction with template and fluorescent monomer. Finally, interesting differences between both enantiomers have been observed in both theory and experiment, suggesting true control of enantioselectivity. The contribution concludes with suggestions for translating the findings into actual MIP development. KW - Anion receptors KW - Fluorescence sensing KW - Molecular dynamics simulations KW - Molecularly imprinted polymers KW - Rational design PY - 2018 U6 - https://doi.org/10.1021/acs.langmuir.8b00500 SN - 0743-7463 VL - 34 IS - 23 SP - 6963 EP - 6975 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-45399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -