TY - CONF A1 - Wagner, Sabine A1 - Bell, Jérémy A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Combining fluorescent molecularly imprinted polymer sensor particles with microfluidic devices for the detection of herbicides N2 - 2,4-Dichlorophenoxyacetic acid (2,4-D) is one important and well-known herbicide that is widely used in agriculture because of its advantages to regulate plant growth. However, the use of large quantities of the treated plants as animal feed leads to residues in meat, milk and eggs. Furthermore, the herbicide can drain away and contaminate ground and drinking water. The ingestion of 2,4-D-contaminated food and water causes damage to the inner organs of humans and animals, e.g., the kidneys and the liver. Analytical assays based on molecularly imprinted polymers (MIPs) have emerged as a valuable tool in the field of environmental analysis due to the low production costs, stability, format adaptability and the possibility to imprint and thus their ability to recognize a wide variety of target analytes. With regard to optical sensing technologies, however, MIPs have only been used in considerably few applications, especially in fluorescence sensors. This limitation is basically due to the fact that the incorporation of a fluorescently responding moiety into a polymer matrix is challenging. One way to overcome this limitation is to use tailor-made fluorescent indicator monomers for direct transfer of the binding event into an optical signal and coat the MIP via reversible addition-fragmentation chain transfer (RAFT) polymerization as a thin layer onto the surface of silica nanoparticles as primary sensing element. Here, we present the response behavior of the fluorescent MIP sensor particles in terms of sensitivity for 2,4-D detection (the so-called imprinting factor), discrimination ability against structurally similar compounds and performance in a phase-transfer assay (PTA) on chip, i.e., the implementation of the assay into a microfluidic chip environment, offering a novel simple and rapid way for the detection of herbicides. T2 - 10. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 28.02.2016 KW - Molecularly imprinted polymer KW - Fluorescence KW - Microfluidic devices PY - 2016 AN - OPUS4-38165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wagner, Sabine A1 - Bell, Jérémy A1 - Biyikal, Mustafa A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Detection of herbicides with fluorescent molecularly imprinted polymer sensor particles integrated with microfluidic devices N2 - 2,4-Dichlorophenoxyacetic acid (2,4-D) is one important and well-known herbicide that is widely used in agriculture because of its advantages to regulate plant growth. However, the use of large quantities of the treated plants as animal feed leads to residues in meat, milk and eggs. Furthermore, the herbicide can drain away and contaminate ground and drinking water. The ingestion of 2,4-D-contaminated food and water causes damage to the inner organs of humans and animals, e.g., the kidneys and the liver. Analytical assays based on molecularly imprinted polymers (MIPs) have emerged as a valuable tool in the field of environmental analysis due to the low production costs, stability, format adaptability and the possibility to imprint and thus their ability to recognize a wide variety of target analytes.5 With regard to optical sensing technologies, however, MIPs have only been used in considerably few applications, especially in fluorescence sensors. This limitation is basically due to the fact that the incorporation of a fluorescently responding moiety into a polymer matrix is challenging. One way to overcome this limitation is to use tailor-made fluorescent indicator monomers for direct transfer of the binding event into an optical signal and coat the MIP via reversible addition-fragmentation chain transfer (RAFT) polymerization as a thin layer onto the surface of silica nanoparticles as primary sensing element. Here, we present the response behavior of the fluorescent MIP sensor particles in terms of sensitivity for 2,4-D detection (the so-called imprinting factor), discrimination ability against structurally similar compounds and performance in a phase-transfer assay (PTA) on chip, i.e., the implementation of the assay into a microfluidic chip environment, offering a novel simple and rapid way for the detection of herbicides. T2 - MIP2016 CY - Lund, Sweden DA - 26.06.2016 KW - Molecularly imprinted polymer KW - Fluorescence KW - Microfluidic devices PY - 2016 AN - OPUS4-38168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -