TY - JOUR A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Wachtendorf, Volker A1 - Schütter, Jan David A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Koerdt, Andrea T1 - Photo-oxidation of PE-HD affecting polymer/fuel interaction and bacterial attachment JF - Materials Degradation N2 - In the present study, a simple approach was used to investigate the effect of UV-exposure on two high density Polyethylene materials (PE-HD), commonly used for storage tanks, on fuel sorption behavior and colonization by microorganisms. The aim was to investigate whether the sorption behavior of the fuels (diesel/biodiesel) and the colonization by microorganisms, frequently occurring in the fuel, is affected and may lead to undesirable or safety-relevant material changes. We showed that the UV-irradiation leads to significant changes of the sorption behavior due to chemi-crystallization and crosslinking. The fuel Sorption is affected by the UV-induced formation of polar carbonyl and hydroxyl groups predominantly occurring at the surface. With respect to microbial colonization behavior for Bacillus subtilis and Pseudomonas aeruginosa, isolated from a contaminated diesel sample, differences of the initial adhesion could be shown depending on the initial type of polyethylene as well as on the degree of UV-induced degradation. KW - High density polyethylene KW - Bacterial attachment KW - UV-irradiation KW - Fuel sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510001 DO - https://doi.org/10.1038/s41529-020-0122-1 VL - 4 IS - 1 SP - Article number: 18 PB - Nature Partner Journals AN - OPUS4-51000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Evaluation of UV-induced embrittlement of PE-HD by Charpy impact test JF - Journal of Applied Polymer Science N2 - The impact fracture behavior of two common high-density polyethylene grades for container applications were intensively studied by the instrumented Charpy impact test after well-defined exposure to UV-irradiation. Individual stages of the impact event, such as crack initiation and crack propagation energy as well as maximum impact load, were investigated from the recorded load–deflection curves. UV-induced material property changes were further investigated by infrared spectroscopy, differential scanning calorimetry, and dynamic-mechanical analysis as well as density measurements. Based on the results of the Charpy impact test, three indicators were identified to describe the extend of photooxidation on high-density polyethylene: (a) a reduced Charpy impact strength—at least to half of its initial value for a distinctly brittle impact fracture, (b) a marked decrease in the crack propagation contribution to the impact strength, and (c) an increase of the brittle features of the fracture surface. KW - Degradation KW - Mechanical properties KW - Packaging KW - Polyolefins KW - Polyethylene PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509130 DO - https://doi.org/10.1002/APP.49069 SN - 0021-8995 VL - 137 IS - 36 SP - 49069 PB - Wiley AN - OPUS4-50913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niebergall, Ute A1 - Zanotto, M. A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Impact of biodiesel sorption on tensile properties of PE-HD for container applications JF - Polymer Testing N2 - In previous papers, we investigated the influence of biodiesel or diesel on mechanical properties of a high-density polyethylene (PE-HD) for tank applications using Charpy impact tests and dynamicmechanical analysis (DMA). In this work, covering two more PE-HD materials, we extend our study to addressing the tensile properties, especially changes of Young's modulus, after immersion in biodiesel or diesel at 60 °C. As we cover sorption and desorption behavior, during desorption, i.e. storage at 60 °C in a circulating air oven, ageing or degradation phenomena were also observed and characterized in some detail using spectral reflectance measurements and FT-IR spectroscopy. The results obtained here support the concept of co-oxidation, i.e. the faster oxidation of the PE-HD matrix if the samples were previously saturated with biodiesel, itself easily oxidizable. KW - polyethylene KW - biodiesel KW - biofuels KW - sorption KW - plasticization KW - degradation PY - 2016 DO - https://doi.org/10.1016/j.polymertesting.2016.01.025 SN - 0142-9418 VL - 50 SP - 315 EP - 324 PB - Elsevier AN - OPUS4-35369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures JF - Quantitative InfraRed Thermography Journal N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering as well as of acrylonitrile butadiene styrene (ABS) by Fused Layer Modelling, were characterised with active thermography directly after manufacturing and after artificial weathering. For this, two different excitation methods (flash and pulse heating) were used and compared, regarding their suitability for the detection of constructed and imprinted defects inside the test specimens. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier Transformation after TSR were applied. To further investigate the long-term stability of the additively manufactured test specimens towards environmental stress, like UV radiation, heat, humidity, water contact and frost with active thermography, an artificial weathering test over 2000 hours (~3 months) was applied to the specimens. The monitoring of the changes in the optical properties of the weathered plastics was supplemented by spectral reflectance and UV/VIS spectroscopy. KW - Additive manufacturing KW - Polymers KW - Artificial weathering KW - Active thermography KW - UV/VIS spectroscopy PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1686896 SN - 1768-6733 (Print) 2116-7176 (Online) VL - 18 IS - 1 SP - 50 EP - 72 PB - Taylor & Francis AN - OPUS4-49817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Chatzigiannakis, E. A1 - Beckmann, Jörg A1 - Wachtendorf, Volker A1 - von der Ehe, Kerstin A1 - Braun, Ulrike A1 - Jaunich, Matthias A1 - Schade, U. A1 - Wolff, Dietmar T1 - Discoloration Effects of High-Dose gamma-Irradiation and Long-Term Thermal Aging of (U) HMW-PE JF - International Journal of Polymer Science N2 - Two polyethylene types with ultra-high (UHMWPE) and high molecular weight (HMW-PE) used as neutron radiation shielding materials in casks for radioactive waste were irradiated with doses up to 600 kGy using a 60Co gammasource. Subsequently, thermal aging at 125∘C was applied for up to one year. Degradation effects in the materials were characterized using colorimetry, UV-Visspectroscopy, IR spectroscopy, and DSC. Both materials exhibited a yellowing upon irradiation.The discoloration of UHMW-PE disappeared again after thermal aging.Therefore, the yellowing is assumed to originate fromannealable color centers in the formof free radicals that are trapped in the crystalline regions of the polymer and recombine at elevated temperatures. For the antioxidantcontaining HMWPE, yellowing was observed after both irradiation and thermal aging. The color change was correlated mainly to decomposition products of the antioxidant in addition to trapped radicals as in UHMW-PE. Additionally, black spots appeared after thermal aging of HMW-PE. KW - Irradiation KW - UHMWPE KW - Colour center KW - Yellowness index PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-423992 DO - https://doi.org/10.1155/2017/1362491 SN - 1687-9422 VL - 2017 IS - Article ID 1362491 SP - 1 EP - 10 PB - Hindawi AN - OPUS4-42399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wachtendorf, Volker A1 - Kalbe, Ute A1 - Krüger, O. A1 - Bandow, Nicole ED - Brown, R. ED - Gedde, U.W. ED - Hedenqvist, M.S. T1 - Influence of weathering on the leaching behaviour of zinc and PAH from synthetic sports surfaces JF - Polymer Testing N2 - Synthetic materials used for outdoor sports grounds consist of a mix of inorganic, organic and polymeric compounds that show ageing due to weathering and a complex leaching behaviour by percolation of rainwater, which can limit its lifetime. Additionally, weathering exposure induces degradation processes in the polymers, which leads to the formation of new surfaces allowing water to access additional reservoirs of leachable compounds. A laboratory test comprising artificial weathering, ozonisation and subsequent leaching was developed to investigate this behaviour in a reproducible and controllable way. The experiments showed a general decline of Zn, polycyclic aromatic hydrocarbons (PAH) and total organic carbon (TOC) concentrations after an initial increase. Within this general trend, the course of concentration over exposure duration is very specific for individual sample materials and the analyte under investigation. The results indicate that weathering and degradation behaviour cannot be predicted from initial material conditions. Thus, weathering experiments are recommended to fill this gap of knowledge. KW - Athletic tracks KW - Artificial turf KW - Ageing KW - Artificial weathering KW - Polymer degradation KW - Rubber granules KW - Leaching KW - Contamination PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2017.09.021 SN - 0142-9418 SN - 1873-2348 VL - 63 IS - October SP - 621 EP - 631 PB - Elsevier Ltd. CY - Amsterdam, The Netherlands AN - OPUS4-42205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Milks, A. A1 - Lehmann, J. A1 - Leder, D. A1 - Sietz, M. A1 - Koddenberg, T. A1 - Böhner, U. A1 - Wachtendorf, Volker A1 - Terberger, T. T1 - A double-pointed wooden throwing stick from Schöningen, Germany: Results and new insights from a multianalytical study JF - PLOS ONE N2 - The site of Schöningen (Germany), dated to ca. 300,000 years ago, yielded the earliest large-scale record of humanly-made wooden tools. These include wooden spears and shorter double-pointed sticks, discovered in association with herbivores that were hunted and butchered along a lakeshore. Wooden tools have not been systematically analysed to the same standard as other Palaeolithic technologies, such as lithic or bone tools. Our multianalytical study includes micro-CT scanning, 3-dimensional microscopy, and Fourier transform infrared spectroscopy, supporting a systematic technological and taphonomic analysis, thus setting a new standard for wooden tool analysis. In illustrating the biography of one of Schöningen’s double-pointed sticks, we demonstrate new human behaviours for this time period, including sophisticated woodworking techniques. The hominins selected a spruce branch which they then debarked and shaped into an aerodynamic and ergonomic tool. They likely seasoned the wood to avoid cracking and warping. After a long period of use, it was probably lost while hunting, and was then rapidly buried in mud. Taphonomic alterations include damage from trampling, fungal attack, root damage and compression. Through our detailed analysis we show that Middle Pleistocene humans had a rich awareness of raw material properties, and possessed sophisticated woodworking skills. Alongside new detailed morphometrics of the object, an ethnographic review supports a primary function as a throwing stick for hunting, indicating potential hunting strategies and social contexts including for communal hunts involving children. The Schöningen throwing sticks may have been used to strategically disadvantage larger ungulates, potentially from distances of up to 30 metres. They also demonstrate that the hominins were technologically capable of capturing smaller fast prey and avian fauna, a behaviour evidenced at contemporaneous Middle Pleistocene archaeological sites. KW - FTIR KW - Stone Age KW - Middle Pleistocene KW - Throwing-stick KW - Wood KW - Micro-CT scanning KW - 3-dimensional microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580012 DO - https://doi.org/10.1371/journal.pone.0287719 SN - 1932-6203 VL - 18 IS - 7 SP - 1 EP - 32 PB - PLOS CY - San Francisco, California, US AN - OPUS4-58001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Schmidt, Anita A1 - Goedecke, Thomas T1 - Combined impact of UV radiation and nitric acid on HDPE containers during outdoor exposure T1 - Kombinierte Einwirkung von UV-Strahlung und Salpetersäure auf HDPE-Behälter bei der Freibewitterung JF - Materials Testing N2 - Unpigmented HDPE jerrycans filled with nitric acid (55%) and water respectively had been exposed to outdoor conditions for one Berlin summer season. As both liquids underwent equal temperature progression, exposure effects of UV radiation and nitric acid as well as of their combination can be separated and compared. On the basis of various property changes after these exposures, synergistic action is evaluated and compared to a damaged Intermediate Bulk Container (IBC) from a transport accident. It is found that carbonyl formation goes along with lightness increase in color measurement due to microcracking and with a worsening in mechanical behavior, all of them showing synergistic effects of UV and nitric acid exposure. In contrast, embedding nitrogen compounds goes along with yellowing of the material but cannot be correlated to oxidation. The reason for intensified damaging is the decomposition of the 55-percent nitric acid and formation of nitrogen oxides even at ambient temperatures, caused by UV radiation. Thus, damaging effects become similar to those caused by fuming nitric acid exposure at temperatures above 60 °C, with the result of strong oxidative degradation of the polyethylene. In contrast, exclusive exposure to the 55-percent nitric acid at 40 °C does not cause any failure. It can therefore be assumed that also the damaged IBC had been exposed to both UV radiation and nitric acid, probably outdoors. KW - Polyethylene KW - Nitric acid KW - UV radiation KW - Outdoor weathering KW - Resistance PY - 2018 DO - https://doi.org/10.3139/120.111148 SN - 0025-5300 VL - 60 IS - 3 SP - 257 EP - 264 PB - Carl Hanser Verlag CY - München AN - OPUS4-44567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Falkenhagen, Jana A1 - Wachtendorf, Volker A1 - Brüll, Robert A1 - Simon, Franz-Georg T1 - Investigation on the Durability of a Polypropylene Geotextile under Artificial Aging Scenarios JF - Sustainability N2 - Geosynthetics are widely used in various civil engineering applications, such as geotextiles in coastal protection, and display a sustainable alternative to natural mineral materials. However, the full benefits of using geosynthetics can only be gained with a long service lifetime of the products. With the use of added stabilizers to the polymers, service lifetimes can be achieved in the range of 100 years. Therefore, accelerated aging methods are needed for the assessment of the long-term performance of geotextiles. In the present study, the behavior of geosynthetic materials made of polypropylene was investigated under artificial aging conditions involving elevated temperatures ranging from 30 to 80 °C, increased oxygen pressures ranging from 10 to 50 bar in water-filled autoclaves, and UV irradiation under atmospheric conditions. ATR-IR spectroscopy was employed to detect the increase in the carbonyl index over various aging durations, indicating the oxidative degradation of the geotextile. The most pronounced increase was observed in the case of aging through UV irradiation, followed by thermal aging. Elevated pressure, on the other hand, had a lower impact on oxidation. High-temperature size exclusion chromatography was utilized to follow the reduction in molar mass under different degradation conditions, and the results were consistent with those obtained from ATR-IR spectroscopy. In polyolefins such as polypropylene, Hindered Amine Stabilizers (HAS) are used to suppress oxidation caused by UV radiation. The quantitative analysis of HAS was carried out using a UV/Vis method and HPLC. The degradation of UV stabilizers during the aging of geotextiles is responsible for the oxidation and the reduction in the molar mass of polypropylene. From the results, it can be concluded that applications of PP geotextile without soil or sand cover might cause the risk of the formation of microplastic particles. Material selection, design, and maintenance of the construction must follow best practices, including the system’s removal or replacement at end-of-life. Otherwise, a sustainable use of geotextiles in civil engineering is not possible. KW - Geotextiles KW - Microplastic KW - Size exclusion chromatography KW - Accelerated aging PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599739 DO - https://doi.org/10.3390/su16093559 SN - 2071-1050 VL - 16 IS - 9 SP - 1 EP - 15 PB - MDPI AG CY - Basel AN - OPUS4-59973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions JF - Polymer Testing N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -