TY - JOUR A1 - Tang, S. A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Qian, Lijun A1 - Dong, Y. A1 - Schartel, Bernhard T1 - Enhanced flame-retardant effect of montmorillonite/phosphaphenanthrene compound in an epoxy thermoset N2 - A phosphaphenanthrene and triazinetrione group containing flame retardant (TAD) is combined with organically modified montmorillonite (OMMT) in epoxy resin thermosets (EP) to improve the performance of the flame-retardant system. When only 1 wt% OMMT/4 wt% TAD is introduced into the EP, the limited oxygen index (LOI) rises from 26% to 36.9% and a V-0 rating is achieved in a UL 94 test. The decomposition and pyrolysis products in the gas phase and condensed phase were characterized using thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The influence on the decomposition of EP, such as the increase in char yield, is limited with the incorporation of OMMT; a large amount of the phosphorus is released into the gas phase. The flame-retardant effect evaluation based on cone calorimeter data testified that OMMT improves the protective-barrier effect of the fire residue of OMMT/TAD/EP on the macroscopic scale, while TAD mainly causes flame inhibition. The fire residues showed a corresponding macroscopic appearance (digital photo) and microstructure (scanning electron microscope [SEM] results). The protective barrier effect of OMMT and the flame-inhibition effect of TAD combined to exert a superior flame-retardant effect, resulting in sufficient flame-retardant performance of OMMT/TAD/EP KW - Flame retardant KW - Nanocomposite KW - DOPO KW - Thermoset KW - Epoxy resin KW - TG-FTIR PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388865 DO - https://doi.org/10.1039/c6ra25070j SN - 2046-2069 VL - 7 IS - 2 SP - 720 EP - 728 AN - OPUS4-38886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Falkenhagen, Jana A1 - Wachtendorf, Volker A1 - Brüll, Robert A1 - Simon, Franz-Georg T1 - Investigation on the Durability of a Polypropylene Geotextile under Artificial Aging Scenarios N2 - Geosynthetics are widely used in various civil engineering applications, such as geotextiles in coastal protection, and display a sustainable alternative to natural mineral materials. However, the full benefits of using geosynthetics can only be gained with a long service lifetime of the products. With the use of added stabilizers to the polymers, service lifetimes can be achieved in the range of 100 years. Therefore, accelerated aging methods are needed for the assessment of the long-term performance of geotextiles. In the present study, the behavior of geosynthetic materials made of polypropylene was investigated under artificial aging conditions involving elevated temperatures ranging from 30 to 80 °C, increased oxygen pressures ranging from 10 to 50 bar in water-filled autoclaves, and UV irradiation under atmospheric conditions. ATR-IR spectroscopy was employed to detect the increase in the carbonyl index over various aging durations, indicating the oxidative degradation of the geotextile. The most pronounced increase was observed in the case of aging through UV irradiation, followed by thermal aging. Elevated pressure, on the other hand, had a lower impact on oxidation. High-temperature size exclusion chromatography was utilized to follow the reduction in molar mass under different degradation conditions, and the results were consistent with those obtained from ATR-IR spectroscopy. In polyolefins such as polypropylene, Hindered Amine Stabilizers (HAS) are used to suppress oxidation caused by UV radiation. The quantitative analysis of HAS was carried out using a UV/Vis method and HPLC. The degradation of UV stabilizers during the aging of geotextiles is responsible for the oxidation and the reduction in the molar mass of polypropylene. From the results, it can be concluded that applications of PP geotextile without soil or sand cover might cause the risk of the formation of microplastic particles. Material selection, design, and maintenance of the construction must follow best practices, including the system’s removal or replacement at end-of-life. Otherwise, a sustainable use of geotextiles in civil engineering is not possible. KW - Geotextiles KW - Microplastic KW - Size exclusion chromatography KW - Accelerated aging PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599739 DO - https://doi.org/10.3390/su16093559 SN - 2071-1050 VL - 16 IS - 9 SP - 1 EP - 15 PB - MDPI AG CY - Basel AN - OPUS4-59973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Krüger, Simone A1 - Hennecke, Manfred T1 - Chemiluminescence - An advanced method for small extent, early stages and accelerated testing of the thermooxidative degradation in polymers T2 - Makromolekulares Kolloquium Freiburg CY - Freiburg im Breisgau, Germany DA - 2000-02-24 PY - 2000 SP - 45 CY - Freiburg im Breisgau AN - OPUS4-2435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence - A promising new testing method for plastic optical fibres? T2 - 7th International Plastic Optical Fibres Conference (POF-7) CY - Berlin, Germany DA - 1998-10-05 PY - 1998 SN - 3-905084-55-4 VL - 7 SP - 248 EP - 249 PB - AKM AG CY - Basel AN - OPUS4-2433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wachtendorf, Volker A1 - Geburtig, Anja A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Trubiroha, Peter T1 - Influence of weathering on the stability of flame retardancy in polymeric materials for outdoor use T2 - 4th European weathering symposium - Natural and artificial ageing of polymers CY - Budapest, Hungary DA - 2009-09-16 KW - Flame retardancy KW - Weathering KW - Stability KW - Polymeric material KW - Outdoor PY - 2009 SN - 978-3-9810472-8-8 IS - CEEES Publication No. 11 SP - 313 EP - 326 PB - DWS Werbeagentur und Verlag GmbH CY - Karlsruhe AN - OPUS4-20060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Multifunctional multilayer graphene/elastomer nanocomposites N2 - Elastomers are usually reinforced and employed in different applications. Various different nanoparticles, including layered silicates, carbon nanotubes, and expanded graphite, are currently being used as nanofiller. Multilayer Graphene (MLG) is proposed as promising nanofiller to improve the functional properties of Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR) and Styrene–Butadiene Rubber (SBR) at low concentrations. MLG is constituted by only approximately 10 graphene sheets. Nanocomposites with extremely low MLG content (3 phr) showed evident improvement in rheological, mechanical and curing properties. The Young's modulus of the nanocomposites increased more than twice in comparison with the unfilled rubbers. MLG also improved the weathering resistance of the different rubbers. The nanocomposites conserved their initial mechanical properties against weathering exposure. KW - Elastomer KW - Nanocomposite KW - Multilayer graphene PY - 2015 DO - https://doi.org/10.1016/j.eurpolymj.2015.07.050 SN - 0014-3057 SN - 1873-1945 VL - 71 SP - 99 EP - 113 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-33843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Morys, Michael A1 - Schartel, Bernhard T1 - Multilayer graphene/chlorine-isobutene-isoprene rubber nanocomposites: the effect of dispersion N2 - Multilayer graphene (MLG) is composed of approximately 10 sheets of graphene. It is a promising nanofiller just starting to become commercially available. The Dispersion of the nanofiller is essential to exploit the properties of the nanocomposites and is dependent on the preparation method. In this study, direct incorporation of 3 parts per hundred of rubber (phr) MLG into chlorine-isobutene- isoprene rubber (CIIR) on a two-roll mill did not result in substantial enhancement of the material properties. In contrast, by pre-mixing the MLG (3 phr) with CIIR using an ultrasonically assisted solution mixing procedure followed by two-roll milling, the properties (rheological, curing, and mechanical) were improved substantially compared with the MLG/CIIR nanocomposites mixed only on the mill. The Young’s moduli of the nanocomposites mixed in solution increased by 38%. The CIIR/MLG nanocomposites produced via solution showed superior durability against weathering exposure. KW - Multilayer graphene KW - Nanocomposite KW - Dispersion KW - Rubber PY - 2016 DO - https://doi.org/10.1002/pat.3740 SN - 1042-7147 SN - 1099-1581 VL - 27 IS - 7 SP - 872 EP - 881 PB - Wiley AN - OPUS4-36866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Hennecke, Manfred A1 - Grell, M. A1 - Bradley, D.D.C. T1 - Polarized fluorescence and orientational order parameters of a liquid-crystalline conjugated polymer N2 - We report a study of the orientational order of aligned thin films of the liquid crystalline conjugated polymer poly(9,9-dioctylfluorene). Steady state polarized fluorescence measurements were used to determine the orientational order parameter and . The influence of intermolecular and intramolecular excitation energy transfer on the degree of polarization is discussed. The role of film morphology is also examined by comparison of the results for glassy and crystalline films. KW - Liquid-cristalline conjugated Polymer KW - Polarized fluorescence measurements PY - 1999 SN - 1098-0121 SN - 0163-1829 SN - 0556-2805 SN - 1095-3795 SN - 1550-235X VL - 60 IS - 1 SP - 277 EP - 283 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, C. A1 - Stühler, M. R. A1 - Gallizioli, C. A1 - Manjunatha, B. R. A1 - Wachtendorf, Volker A1 - Schartel, Bernhard A1 - Plajer, A. J. T1 - Precise construction of weather-sensitive poly(ester-alt-thioesters) from phthalic thioanhydride and oxetane N2 - We report the selective ring opening copolymerisation (ROCOP) of oxetane and phthalic thioanhydride by a heterobimetallic Cr(III)K catalyst precisely yielding semi-crystalline alternating poly(esteralt- thioesters) which show improved degradability due to the thioester links in the polymer backbone. KW - Sulfur containing polymers KW - Durability KW - Weathering KW - Synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590762 DO - https://doi.org/10.1039/d3cc03315e SN - 1364-548X VL - 59 IS - 76 SP - 11353 EP - 11356 PB - RSC AN - OPUS4-59076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Y. A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Qian, L. A1 - Liu, Z. A1 - Schartel, Bernhard T1 - Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset N2 - A siloxane compound (MVC) and a bi-group phosphaphenanthrene/triazine compound (TGD) were employed in epoxy thermosets to explore high-efficiency flame retardant systems. With only 1wt% MVC and 3wt% TGD, an epoxy thermoset passed UL 94 V-0 rating test and achieved a limiting oxygen index value of 34.0%, exhibiting an excellent flame retardant effect. The MVC/TGD system not only decreased the peak value of heat release rate and effective heat of combustion but also imparted an improved charring ability to thermosets, thereby outstandingly reducing the flammability of 1%MVC/3%TGD/EP. Compared with the fire performance of 4%TGD/EP and 4%MVC/EP, the MVC/TGD system showed an obvious flame retardant synergistic effect, mainly depending on the general improvement of flame inhibition, charring and barrier effects of the thermoset during combustion. Evolved gas analysis combinedwith condensed-phase pyrolysis product Analysis jointly revealed the details of the changed pyrolysis mode. KW - Flame retardant KW - Epoxy resin KW - Synergy KW - Siloxane KW - DOPO KW - Triazine PY - 2017 DO - https://doi.org/10.1002/pi.5466 SN - 0959-8103 SN - 1097-0126 VL - 66 IS - 12 SP - 1883 EP - 1890 PB - Wiley AN - OPUS4-42950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -