TY - JOUR A1 - Kalbe, Ute A1 - Krüger, Oliver A1 - Wachtendorf, Volker A1 - Berger, Wolfgang A1 - Hally, S. T1 - Development of leaching procedures for synthetic turf systems containing scrap tyre granules N2 - Scrap tyres are widely reused in the form of granules as infill materials or component of sub-base layers in construction of sporting grounds such as synthetic turf areas and athletic track surfaces. The recycled rubber may contain organic and inorganic pollutants due to the presence of vulcanisation catalysts, stabilisers and other additives which can be released into soil and groundwater in the case of outdoor sports facilities. In order to evaluate the amount of potentially mobile pollutants, leaching tests can be employed. This study aimed particularly at the investigation of the feasibility of column tests using complete synthetic surface flooring or turf system assemblies. The release of zinc and polycyclic aromatic hydrocarbons (PAH) leached from components of sports surfaces containing recycled rubber granules was considered. Additionally, batch tests on coated and uncoated styrene butadiene rubber (SBR) granules aged by artificial weathering were performed to indicate its possible influence on the leaching behaviour of zinc and PAH. The chosen approach of column tests simulating typical complete synthetic sports surface installations has been proven to be feasible and robust. The time-dependent leaching behaviour and interactions between single components can be evaluated by column tests. Zinc was the most relevant contaminant in the eluates and its leachability was enhanced after accelerated ageing by artificial weathering. Leachable PAH were found in relatively low but well detectable amounts which increase by ageing as well. KW - Waste rubber KW - SBR KW - Artificial turf KW - Leaching KW - behaviour KW - Column test KW - Batch test KW - Weathering PY - 2013 DO - https://doi.org/10.1007/s12649-013-9248-5 SN - 1877-2641 SN - 1877-265X VL - 4 IS - 4 SP - 745 EP - 757 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-29454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Falkenhagen, Jana T1 - Combined impact of UV radiation and nitric acid on high‐density polyethylene containers as a laboratory test N2 - In a laboratory test, transparent high‐density polyethylene (HDPE) jerrycans have been exposed to both UV radiation and 55 wt‐% nitric acid solution at (41 ± 2)°C, for up to 20 days. For comparison, UV radiant exposure (21 days) and nitric acid exposure (up to 6 weeks) were performed separately, at nearly equal temperatures. The damages are compared with FTIR spectroscopy in ATR and HT‐gel permeation chromatography(GPC) on a molecular level and with hydraulic internal pressure testing as a component test. For the used jerrycans, relevant oxidation can only be found after the combined exposure. This is caused by the decomposition of nitric acid into nitrous gases by UV radiation, which is also observed at lower concentrations (28 wt‐%). After 6 days of laboratory exposure, this is rated as critical, which corresponds to about 1/10 year in Central Europe, according to the UV radiant exposure. The gradual increase in oxidative damage shows the reproducibility of the test. KW - Molecular mass distribution KW - High-density polyethylene KW - Nitric acid KW - UV radiation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550141 DO - https://doi.org/10.1002/pts.2673 SN - 0894-3214 SP - 1 EP - 7 PB - John Wiley & Sons Ltd AN - OPUS4-55014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, S. A1 - Timmel, S. A1 - Gläser, M. A1 - Braun, Ulrike A1 - Wachtendorf, Volker A1 - Hagendorf, C. T1 - Polymer foil additives trigger the formation of snail trails in photovoltaic modules N2 - After several months of operation, many photovoltaic (PV) modules develop a discolouration defect called snail trails which appear as irregular dark traces across the cells. These traces are caused by silver nanoparticles accumulating within the encapsulation foil directly above the grid finger. In this work we systematically investigate combinations of encapsulation and back-sheet foils with respect to their susceptibility for snail trails. We can show that certain additive compositions within the encapsulation and back sheet foils are critical for the formation of the discolouring silver nanoparticles. We suggest a reaction model explaining the formation of snail trails from a chemical point of view. This fundamental understanding allows the rapid testing of foils for their snail trail sensitivity as well as the special design of resistant foils. KW - Snail trails KW - Encapsulation foil KW - Back-sheet foil KW - Additives KW - Silver nanoparticles PY - 2014 DO - https://doi.org/10.1016/j.solmat.2014.06.028 SN - 0927-0248 VL - 130 SP - 64 EP - 70 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-31249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Appajaiah, Anilkumar A1 - Wachtendorf, Volker A1 - Daum, Werner T1 - Climatic exposure of polymer optical fibers: Thermooxidative stability characterization by chemiluminescence N2 - The optical transmission stability was investigated for commercially available polymer optical fibers (POFs) which were exposed to a climate of 92°C and 95% relative humidity for about 3300 h. The optical transmission stability of POFs was correlated to their thermooxidative stability. POFs possessed identical core material, poly(methyl methacrylate), but they differed in the materials used for the claddings. The optical transmission was measured online using a prototype device called multiplexer. The chemiluminescence (CL) technique was applied to characterize the thermooxidative stability and degradation of POFs. CL analysis reveals the thermooxidative degradation of bare POFs (core and cladding), predominantly of the claddings, as a result of climatic exposure. Ultraviolet-visible transmittance measurements demonstrated more changes in the claddings as compared to the cores due to degradation. The CL and optical measurements data indicated that the optical transmission stability of POFs was dependent mainly on the thermooxidative stability of the claddings and their chemical compositions. KW - Ageing KW - Polymer optical fiber KW - Degradation KW - Chemiluminescence KW - Transparency PY - 2007 DO - https://doi.org/10.1002/app.23955 SN - 0021-8995 SN - 1097-4628 VL - 103 IS - 3 SP - 1593 EP - 1601 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-19072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wachtendorf, Volker A1 - Geburtig, Anja T1 - Chemiluminescence for the early detection of weathering effects of coatings - Part I: Fundamentals KW - Chemiluminescence KW - Weathering KW - Polymer KW - Oxidation PY - 2010 SN - 1547-0083 VL - 7 IS - 4 SP - 66 EP - 71 PB - Federation of Societies for Coatings Technology CY - Blue Bell, Pa. AN - OPUS4-21493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wachtendorf, Volker A1 - Geburtig, Anja T1 - Chemiluminescence for the early detection of weathering effects of coatings - Part II: Experimental set-up and examination KW - Chemiluminescence KW - Weathering KW - Polymer KW - Oxidation PY - 2010 SN - 1547-0083 VL - 7 IS - 5 SP - 38 EP - 44 PB - Federation of Societies for Coatings Technology CY - Blue Bell, Pa. AN - OPUS4-21494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker T1 - Determination of the spectral sensitivity and temperature dependence of polypropylene crack formation caused by UV-irradiation N2 - For polypropylene of varied stabilization, spectral sensitivity as well as temperature dependence of irradiation caused crack formation was determined in artificial irradiation tests. UV radiant exposure HUV necessary to generate crack formation was measured both in spectrally dispersed irradiation and artificial irradiation in a Fluorescent UV lamp device. Dependencies were fitted to a plateau function and an Arrhenius function, respectively, to describe the action of irradiation by response functions. Applied to weather data from Phoenix, the results were compared with respective outdoor exposure results. KW - Weathering KW - UV KW - Temperature KW - Numerical simulation PY - 2010 DO - https://doi.org/10.1016/j.polymdegradstab.2010.06.014 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 10 SP - 2118 EP - 2123 PB - Applied Science Publ. CY - London AN - OPUS4-21913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulz, Ulrich A1 - Wachtendorf, Volker A1 - Geburtig, Anja T1 - Pinholes - the negative impact of mildew growth PY - 2004 SN - 0930-3847 VL - 5 SP - 26 EP - 30 PB - Vincentz CY - Hannover AN - OPUS4-21350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Weidner, Steffen T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes N2 - The effects of weathering exposure on unfilled and filled thermoplastic polyurethanes (TPU) materials are described as performed under different humidity conditions. For this purpose, a weathering device was used with UV-A 340 nm lamps at a constant temperature of 40 °C. The effects of environmental (UV and humidity condition) degradation on the frictional properties of TPU materials are presented along with surface analyses to characterize the chemistry of the degradative process. Photooxidative degradation of unfilled polymer leads to deterioration of physical and mechanical properties, which affects its tribological behavior significantly. Due to crosslinking, the stiffness of the material increases, reducing drastically the friction coefficient of unfilled TPUs. The frictional behavior of glass fiber reinforced TPU is less affected by radiation. KW - Photooxidation KW - UV radiation KW - Friction KW - TPU KW - Humidity PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.006 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 467 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Trubiroha, P. T1 - Exposure response function for a quantitative prediction of weathering caused aging of polyethylene N2 - The exposure response function of the carbonyl formation over the bulk has been determined for a high-density polyethylene of a thickness of 200 μm, which was used as a weathering reference material according to ISO TR 19032. To this end, spectral sensitivity was studied by local measurement of the effect of spectrally dispersed irradiation. Both the exposure device and the methodology of determination are described. The temperature dependency of photooxidation was determined by UV exposure at various temperatures between 23 and 80 °C. Deviations from linearity and thus reciprocity below 40 °C are discussed and assumed to be related to diffusion limitations. An Arrhenius approach –based on data of linear carbonyl formation – has been incorporated into the exposure response function. Using this exposure response function, aging in terms of the distribution of a quantitative property change over a plastic component can be predicted for a specific outdoor location with real chronologic weather data as input for the exposure. Thus, artificial and natural weathering can be linked and compared. The established exposure response function has been validated by outdoor exposure results from the literature. If an estimated diffusion limitation is taken into consideration, calculations and published data are in good agreement. KW - Irradiation KW - Weathering KW - Spectral sensitivity KW - Temperature dependency KW - Spectral irradiation PY - 2019 DO - https://doi.org/10.3139/120.111348 SN - 0025-5300 VL - 61 IS - 6 SP - 517 EP - 526 PB - Carl Hanser Verlag GmbH & Co. KG AN - OPUS4-48295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Wachtendorf, Volker A1 - Schütter, Jan David A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Koerdt, Andrea T1 - Photo-oxidation of PE-HD affecting polymer/fuel interaction and bacterial attachment N2 - In the present study, a simple approach was used to investigate the effect of UV-exposure on two high density Polyethylene materials (PE-HD), commonly used for storage tanks, on fuel sorption behavior and colonization by microorganisms. The aim was to investigate whether the sorption behavior of the fuels (diesel/biodiesel) and the colonization by microorganisms, frequently occurring in the fuel, is affected and may lead to undesirable or safety-relevant material changes. We showed that the UV-irradiation leads to significant changes of the sorption behavior due to chemi-crystallization and crosslinking. The fuel Sorption is affected by the UV-induced formation of polar carbonyl and hydroxyl groups predominantly occurring at the surface. With respect to microbial colonization behavior for Bacillus subtilis and Pseudomonas aeruginosa, isolated from a contaminated diesel sample, differences of the initial adhesion could be shown depending on the initial type of polyethylene as well as on the degree of UV-induced degradation. KW - High density polyethylene KW - Bacterial attachment KW - UV-irradiation KW - Fuel sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510001 DO - https://doi.org/10.1038/s41529-020-0122-1 VL - 4 IS - 1 SP - Article number: 18 PB - Nature Partner Journals AN - OPUS4-51000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Evaluation of UV-induced embrittlement of PE-HD by Charpy impact test N2 - The impact fracture behavior of two common high-density polyethylene grades for container applications were intensively studied by the instrumented Charpy impact test after well-defined exposure to UV-irradiation. Individual stages of the impact event, such as crack initiation and crack propagation energy as well as maximum impact load, were investigated from the recorded load–deflection curves. UV-induced material property changes were further investigated by infrared spectroscopy, differential scanning calorimetry, and dynamic-mechanical analysis as well as density measurements. Based on the results of the Charpy impact test, three indicators were identified to describe the extend of photooxidation on high-density polyethylene: (a) a reduced Charpy impact strength—at least to half of its initial value for a distinctly brittle impact fracture, (b) a marked decrease in the crack propagation contribution to the impact strength, and (c) an increase of the brittle features of the fracture surface. KW - Degradation KW - Mechanical properties KW - Packaging KW - Polyolefins KW - Polyethylene PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509130 DO - https://doi.org/10.1002/APP.49069 SN - 0021-8995 VL - 137 IS - 36 SP - 49069 PB - Wiley AN - OPUS4-50913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niebergall, Ute A1 - Zanotto, M. A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Impact of biodiesel sorption on tensile properties of PE-HD for container applications N2 - In previous papers, we investigated the influence of biodiesel or diesel on mechanical properties of a high-density polyethylene (PE-HD) for tank applications using Charpy impact tests and dynamicmechanical analysis (DMA). In this work, covering two more PE-HD materials, we extend our study to addressing the tensile properties, especially changes of Young's modulus, after immersion in biodiesel or diesel at 60 °C. As we cover sorption and desorption behavior, during desorption, i.e. storage at 60 °C in a circulating air oven, ageing or degradation phenomena were also observed and characterized in some detail using spectral reflectance measurements and FT-IR spectroscopy. The results obtained here support the concept of co-oxidation, i.e. the faster oxidation of the PE-HD matrix if the samples were previously saturated with biodiesel, itself easily oxidizable. KW - polyethylene KW - biodiesel KW - biofuels KW - sorption KW - plasticization KW - degradation PY - 2016 DO - https://doi.org/10.1016/j.polymertesting.2016.01.025 SN - 0142-9418 VL - 50 SP - 315 EP - 324 PB - Elsevier AN - OPUS4-35369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering as well as of acrylonitrile butadiene styrene (ABS) by Fused Layer Modelling, were characterised with active thermography directly after manufacturing and after artificial weathering. For this, two different excitation methods (flash and pulse heating) were used and compared, regarding their suitability for the detection of constructed and imprinted defects inside the test specimens. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier Transformation after TSR were applied. To further investigate the long-term stability of the additively manufactured test specimens towards environmental stress, like UV radiation, heat, humidity, water contact and frost with active thermography, an artificial weathering test over 2000 hours (~3 months) was applied to the specimens. The monitoring of the changes in the optical properties of the weathered plastics was supplemented by spectral reflectance and UV/VIS spectroscopy. KW - Additive manufacturing KW - Polymers KW - Artificial weathering KW - Active thermography KW - UV/VIS spectroscopy PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1686896 SN - 1768-6733 (Print) 2116-7176 (Online) VL - 18 IS - 1 SP - 50 EP - 72 PB - Taylor & Francis AN - OPUS4-49817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Chatzigiannakis, E. A1 - Beckmann, Jörg A1 - Wachtendorf, Volker A1 - von der Ehe, Kerstin A1 - Braun, Ulrike A1 - Jaunich, Matthias A1 - Schade, U. A1 - Wolff, Dietmar T1 - Discoloration Effects of High-Dose gamma-Irradiation and Long-Term Thermal Aging of (U) HMW-PE N2 - Two polyethylene types with ultra-high (UHMWPE) and high molecular weight (HMW-PE) used as neutron radiation shielding materials in casks for radioactive waste were irradiated with doses up to 600 kGy using a 60Co gammasource. Subsequently, thermal aging at 125∘C was applied for up to one year. Degradation effects in the materials were characterized using colorimetry, UV-Visspectroscopy, IR spectroscopy, and DSC. Both materials exhibited a yellowing upon irradiation.The discoloration of UHMW-PE disappeared again after thermal aging.Therefore, the yellowing is assumed to originate fromannealable color centers in the formof free radicals that are trapped in the crystalline regions of the polymer and recombine at elevated temperatures. For the antioxidantcontaining HMWPE, yellowing was observed after both irradiation and thermal aging. The color change was correlated mainly to decomposition products of the antioxidant in addition to trapped radicals as in UHMW-PE. Additionally, black spots appeared after thermal aging of HMW-PE. KW - Irradiation KW - UHMWPE KW - Colour center KW - Yellowness index PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-423992 DO - https://doi.org/10.1155/2017/1362491 SN - 1687-9422 VL - 2017 IS - Article ID 1362491 SP - 1 EP - 10 PB - Hindawi AN - OPUS4-42399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wachtendorf, Volker A1 - Kalbe, Ute A1 - Krüger, O. A1 - Bandow, Nicole ED - Brown, R. ED - Gedde, U.W. ED - Hedenqvist, M.S. T1 - Influence of weathering on the leaching behaviour of zinc and PAH from synthetic sports surfaces N2 - Synthetic materials used for outdoor sports grounds consist of a mix of inorganic, organic and polymeric compounds that show ageing due to weathering and a complex leaching behaviour by percolation of rainwater, which can limit its lifetime. Additionally, weathering exposure induces degradation processes in the polymers, which leads to the formation of new surfaces allowing water to access additional reservoirs of leachable compounds. A laboratory test comprising artificial weathering, ozonisation and subsequent leaching was developed to investigate this behaviour in a reproducible and controllable way. The experiments showed a general decline of Zn, polycyclic aromatic hydrocarbons (PAH) and total organic carbon (TOC) concentrations after an initial increase. Within this general trend, the course of concentration over exposure duration is very specific for individual sample materials and the analyte under investigation. The results indicate that weathering and degradation behaviour cannot be predicted from initial material conditions. Thus, weathering experiments are recommended to fill this gap of knowledge. KW - Athletic tracks KW - Artificial turf KW - Ageing KW - Artificial weathering KW - Polymer degradation KW - Rubber granules KW - Leaching KW - Contamination PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2017.09.021 SN - 0142-9418 SN - 1873-2348 VL - 63 IS - October SP - 621 EP - 631 PB - Elsevier Ltd. CY - Amsterdam, The Netherlands AN - OPUS4-42205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Milks, A. A1 - Lehmann, J. A1 - Leder, D. A1 - Sietz, M. A1 - Koddenberg, T. A1 - Böhner, U. A1 - Wachtendorf, Volker A1 - Terberger, T. T1 - A double-pointed wooden throwing stick from Schöningen, Germany: Results and new insights from a multianalytical study N2 - The site of Schöningen (Germany), dated to ca. 300,000 years ago, yielded the earliest large-scale record of humanly-made wooden tools. These include wooden spears and shorter double-pointed sticks, discovered in association with herbivores that were hunted and butchered along a lakeshore. Wooden tools have not been systematically analysed to the same standard as other Palaeolithic technologies, such as lithic or bone tools. Our multianalytical study includes micro-CT scanning, 3-dimensional microscopy, and Fourier transform infrared spectroscopy, supporting a systematic technological and taphonomic analysis, thus setting a new standard for wooden tool analysis. In illustrating the biography of one of Schöningen’s double-pointed sticks, we demonstrate new human behaviours for this time period, including sophisticated woodworking techniques. The hominins selected a spruce branch which they then debarked and shaped into an aerodynamic and ergonomic tool. They likely seasoned the wood to avoid cracking and warping. After a long period of use, it was probably lost while hunting, and was then rapidly buried in mud. Taphonomic alterations include damage from trampling, fungal attack, root damage and compression. Through our detailed analysis we show that Middle Pleistocene humans had a rich awareness of raw material properties, and possessed sophisticated woodworking skills. Alongside new detailed morphometrics of the object, an ethnographic review supports a primary function as a throwing stick for hunting, indicating potential hunting strategies and social contexts including for communal hunts involving children. The Schöningen throwing sticks may have been used to strategically disadvantage larger ungulates, potentially from distances of up to 30 metres. They also demonstrate that the hominins were technologically capable of capturing smaller fast prey and avian fauna, a behaviour evidenced at contemporaneous Middle Pleistocene archaeological sites. KW - FTIR KW - Stone Age KW - Middle Pleistocene KW - Throwing-stick KW - Wood KW - Micro-CT scanning KW - 3-dimensional microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580012 DO - https://doi.org/10.1371/journal.pone.0287719 SN - 1932-6203 VL - 18 IS - 7 SP - 1 EP - 32 PB - PLOS CY - San Francisco, California, US AN - OPUS4-58001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Schmidt, Anita A1 - Goedecke, Thomas T1 - Combined impact of UV radiation and nitric acid on HDPE containers during outdoor exposure T1 - Kombinierte Einwirkung von UV-Strahlung und Salpetersäure auf HDPE-Behälter bei der Freibewitterung N2 - Unpigmented HDPE jerrycans filled with nitric acid (55%) and water respectively had been exposed to outdoor conditions for one Berlin summer season. As both liquids underwent equal temperature progression, exposure effects of UV radiation and nitric acid as well as of their combination can be separated and compared. On the basis of various property changes after these exposures, synergistic action is evaluated and compared to a damaged Intermediate Bulk Container (IBC) from a transport accident. It is found that carbonyl formation goes along with lightness increase in color measurement due to microcracking and with a worsening in mechanical behavior, all of them showing synergistic effects of UV and nitric acid exposure. In contrast, embedding nitrogen compounds goes along with yellowing of the material but cannot be correlated to oxidation. The reason for intensified damaging is the decomposition of the 55-percent nitric acid and formation of nitrogen oxides even at ambient temperatures, caused by UV radiation. Thus, damaging effects become similar to those caused by fuming nitric acid exposure at temperatures above 60 °C, with the result of strong oxidative degradation of the polyethylene. In contrast, exclusive exposure to the 55-percent nitric acid at 40 °C does not cause any failure. It can therefore be assumed that also the damaged IBC had been exposed to both UV radiation and nitric acid, probably outdoors. KW - Polyethylene KW - Nitric acid KW - UV radiation KW - Outdoor weathering KW - Resistance PY - 2018 DO - https://doi.org/10.3139/120.111148 SN - 0025-5300 VL - 60 IS - 3 SP - 257 EP - 264 PB - Carl Hanser Verlag CY - München AN - OPUS4-44567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence: A promising new testing method for plastic optical fibers N2 - The thermo-oxidative degradation of a polymeric optical cable is investigated by chemiluminescence, The results are reliable and reproducible. Two distinct processes are reported marked by a peak and a plateau behavior versus the time, respectively. Both processes are ruled by thermally activated processes. Beside the dependencies of temperature and time, the influence of absorbed water is discussed. Chemiluminescence is proposed as a promising candidate for a suitable testing method assessing the thermo-oxidative stability of plastic optical fibers and cables. it requires not more than a simple one-day testing procedure and has the advantage that it can be carried out even within the lo cv temperature ranges of the cables' intended use. KW - Chemiluminescence KW - Chemilumineszenz PY - 1999 DO - https://doi.org/10.1109/50.803022 SN - 0733-8724 SN - 1558-2213 VL - 17 IS - 11 SP - 2291 EP - 2296 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -