TY - JOUR A1 - Wachtendorf, Volker A1 - Geburtig, Anja T1 - Chemiluminescence for the early detection of weathering effects of coatings - Part I: Fundamentals JF - JCT coatingsTech KW - Chemiluminescence KW - Weathering KW - Polymer KW - Oxidation PY - 2010 SN - 1547-0083 VL - 7 IS - 4 SP - 66 EP - 71 PB - Federation of Societies for Coatings Technology CY - Blue Bell, Pa. AN - OPUS4-21493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wachtendorf, Volker A1 - Geburtig, Anja T1 - Chemiluminescence for the early detection of weathering effects of coatings - Part II: Experimental set-up and examination JF - JCT coatingsTech KW - Chemiluminescence KW - Weathering KW - Polymer KW - Oxidation PY - 2010 SN - 1547-0083 VL - 7 IS - 5 SP - 38 EP - 44 PB - Federation of Societies for Coatings Technology CY - Blue Bell, Pa. AN - OPUS4-21494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker T1 - Determination of the spectral sensitivity and temperature dependence of polypropylene crack formation caused by UV-irradiation JF - Polymer degradation and stability N2 - For polypropylene of varied stabilization, spectral sensitivity as well as temperature dependence of irradiation caused crack formation was determined in artificial irradiation tests. UV radiant exposure HUV necessary to generate crack formation was measured both in spectrally dispersed irradiation and artificial irradiation in a Fluorescent UV lamp device. Dependencies were fitted to a plateau function and an Arrhenius function, respectively, to describe the action of irradiation by response functions. Applied to weather data from Phoenix, the results were compared with respective outdoor exposure results. KW - Weathering KW - UV KW - Temperature KW - Numerical simulation PY - 2010 DO - https://doi.org/10.1016/j.polymdegradstab.2010.06.014 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 10 SP - 2118 EP - 2123 PB - Applied Science Publ. CY - London AN - OPUS4-21913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures T2 - DGZfP-Proceedings BB 167 N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering (LS) as well as of acrylnitril-butadien-styrol (ABS) by Fused Layer Modeling (FLM), were tested with active thermography. For this, two different excitation methods (flash and impulse excitation) were used and compared, regarding the suitability for the detection of constructed and imprinted defects. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier-Transformation were applied. Furthermore, the long-term stability of the probes towards environmental stress, like UV-radiation, heat, water contact and frost is being investigated in the presented project with artificial weathering tests. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Active thermography KW - Artificial weathering PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453919 SP - Tu.3.A.2, 1 EP - 9 AN - OPUS4-45391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Weidner, Steffen T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes JF - Polymers Testing N2 - The effects of weathering exposure on unfilled and filled thermoplastic polyurethanes (TPU) materials are described as performed under different humidity conditions. For this purpose, a weathering device was used with UV-A 340 nm lamps at a constant temperature of 40 °C. The effects of environmental (UV and humidity condition) degradation on the frictional properties of TPU materials are presented along with surface analyses to characterize the chemistry of the degradative process. Photooxidative degradation of unfilled polymer leads to deterioration of physical and mechanical properties, which affects its tribological behavior significantly. Due to crosslinking, the stiffness of the material increases, reducing drastically the friction coefficient of unfilled TPUs. The frictional behavior of glass fiber reinforced TPU is less affected by radiation. KW - Photooxidation KW - UV radiation KW - Friction KW - TPU KW - Humidity PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.006 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 467 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Trubiroha, P. T1 - Exposure response function for a quantitative prediction of weathering caused aging of polyethylene JF - Materials Testing N2 - The exposure response function of the carbonyl formation over the bulk has been determined for a high-density polyethylene of a thickness of 200 μm, which was used as a weathering reference material according to ISO TR 19032. To this end, spectral sensitivity was studied by local measurement of the effect of spectrally dispersed irradiation. Both the exposure device and the methodology of determination are described. The temperature dependency of photooxidation was determined by UV exposure at various temperatures between 23 and 80 °C. Deviations from linearity and thus reciprocity below 40 °C are discussed and assumed to be related to diffusion limitations. An Arrhenius approach –based on data of linear carbonyl formation – has been incorporated into the exposure response function. Using this exposure response function, aging in terms of the distribution of a quantitative property change over a plastic component can be predicted for a specific outdoor location with real chronologic weather data as input for the exposure. Thus, artificial and natural weathering can be linked and compared. The established exposure response function has been validated by outdoor exposure results from the literature. If an estimated diffusion limitation is taken into consideration, calculations and published data are in good agreement. KW - Irradiation KW - Weathering KW - Spectral sensitivity KW - Temperature dependency KW - Spectral irradiation PY - 2019 DO - https://doi.org/10.3139/120.111348 SN - 0025-5300 VL - 61 IS - 6 SP - 517 EP - 526 PB - Carl Hanser Verlag GmbH & Co. KG AN - OPUS4-48295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Wachtendorf, Volker A1 - Schütter, Jan David A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Koerdt, Andrea T1 - Photo-oxidation of PE-HD affecting polymer/fuel interaction and bacterial attachment JF - Materials Degradation N2 - In the present study, a simple approach was used to investigate the effect of UV-exposure on two high density Polyethylene materials (PE-HD), commonly used for storage tanks, on fuel sorption behavior and colonization by microorganisms. The aim was to investigate whether the sorption behavior of the fuels (diesel/biodiesel) and the colonization by microorganisms, frequently occurring in the fuel, is affected and may lead to undesirable or safety-relevant material changes. We showed that the UV-irradiation leads to significant changes of the sorption behavior due to chemi-crystallization and crosslinking. The fuel Sorption is affected by the UV-induced formation of polar carbonyl and hydroxyl groups predominantly occurring at the surface. With respect to microbial colonization behavior for Bacillus subtilis and Pseudomonas aeruginosa, isolated from a contaminated diesel sample, differences of the initial adhesion could be shown depending on the initial type of polyethylene as well as on the degree of UV-induced degradation. KW - High density polyethylene KW - Bacterial attachment KW - UV-irradiation KW - Fuel sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510001 DO - https://doi.org/10.1038/s41529-020-0122-1 VL - 4 IS - 1 SP - Article number: 18 PB - Nature Partner Journals AN - OPUS4-51000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Evaluation of UV-induced embrittlement of PE-HD by Charpy impact test JF - Journal of Applied Polymer Science N2 - The impact fracture behavior of two common high-density polyethylene grades for container applications were intensively studied by the instrumented Charpy impact test after well-defined exposure to UV-irradiation. Individual stages of the impact event, such as crack initiation and crack propagation energy as well as maximum impact load, were investigated from the recorded load–deflection curves. UV-induced material property changes were further investigated by infrared spectroscopy, differential scanning calorimetry, and dynamic-mechanical analysis as well as density measurements. Based on the results of the Charpy impact test, three indicators were identified to describe the extend of photooxidation on high-density polyethylene: (a) a reduced Charpy impact strength—at least to half of its initial value for a distinctly brittle impact fracture, (b) a marked decrease in the crack propagation contribution to the impact strength, and (c) an increase of the brittle features of the fracture surface. KW - Degradation KW - Mechanical properties KW - Packaging KW - Polyolefins KW - Polyethylene PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509130 DO - https://doi.org/10.1002/APP.49069 SN - 0021-8995 VL - 137 IS - 36 SP - 49069 PB - Wiley AN - OPUS4-50913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niebergall, Ute A1 - Zanotto, M. A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Impact of biodiesel sorption on tensile properties of PE-HD for container applications JF - Polymer Testing N2 - In previous papers, we investigated the influence of biodiesel or diesel on mechanical properties of a high-density polyethylene (PE-HD) for tank applications using Charpy impact tests and dynamicmechanical analysis (DMA). In this work, covering two more PE-HD materials, we extend our study to addressing the tensile properties, especially changes of Young's modulus, after immersion in biodiesel or diesel at 60 °C. As we cover sorption and desorption behavior, during desorption, i.e. storage at 60 °C in a circulating air oven, ageing or degradation phenomena were also observed and characterized in some detail using spectral reflectance measurements and FT-IR spectroscopy. The results obtained here support the concept of co-oxidation, i.e. the faster oxidation of the PE-HD matrix if the samples were previously saturated with biodiesel, itself easily oxidizable. KW - polyethylene KW - biodiesel KW - biofuels KW - sorption KW - plasticization KW - degradation PY - 2016 DO - https://doi.org/10.1016/j.polymertesting.2016.01.025 SN - 0142-9418 VL - 50 SP - 315 EP - 324 PB - Elsevier AN - OPUS4-35369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures JF - Quantitative InfraRed Thermography Journal N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering as well as of acrylonitrile butadiene styrene (ABS) by Fused Layer Modelling, were characterised with active thermography directly after manufacturing and after artificial weathering. For this, two different excitation methods (flash and pulse heating) were used and compared, regarding their suitability for the detection of constructed and imprinted defects inside the test specimens. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier Transformation after TSR were applied. To further investigate the long-term stability of the additively manufactured test specimens towards environmental stress, like UV radiation, heat, humidity, water contact and frost with active thermography, an artificial weathering test over 2000 hours (~3 months) was applied to the specimens. The monitoring of the changes in the optical properties of the weathered plastics was supplemented by spectral reflectance and UV/VIS spectroscopy. KW - Additive manufacturing KW - Polymers KW - Artificial weathering KW - Active thermography KW - UV/VIS spectroscopy PY - 2019 DO - https://doi.org/10.1080/17686733.2019.1686896 SN - 1768-6733 (Print) 2116-7176 (Online) VL - 18 IS - 1 SP - 50 EP - 72 PB - Taylor & Francis AN - OPUS4-49817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -