TY - JOUR A1 - Würth, Christian A1 - González, M.G. A1 - Niessner, R. A1 - Panne, Ulrich A1 - Haisch, C. A1 - Resch-Genger, Ute T1 - Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods - providing the basis for fluorescence quantum yield standards N2 - To establish the methodical basis for the development and certification of fluorescence quantum yield standards, we determined the fluorescence quantum yield Φf of rhodamine 6G (R6G) with two absolute methods with complementary measurement principles, here optical spectroscopy using an integrating sphere setup and pulsed laser photoacoustic spectroscopy (PAS). For the assessment of aggregation- and reabsorption-induced distortions of measured fluorescence quantum yields and procedures for the reliable consideration of such effects, this systematic comparison was performed in ethanol and in water employing different concentrations of R6G. In addition, the relative and absolute fluorescence quantum yields of these solutions were obtained with a calibrated spectrofluorometer and a commercialized integrating sphere setup. Based upon this systematic comparison, experimental advantages and systematic sources of variation were identified for both methods. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Photoacoustic spectroscopy KW - Absolute quantum yield KW - Integrating sphere KW - Rhodamine 6G KW - Aggregation KW - Reabsorption PY - 2012 U6 - https://doi.org/10.1016/j.talanta.2011.12.051 SN - 0039-9140 VL - 90 SP - 30 EP - 37 PB - Elsevier CY - Amsterdam AN - OPUS4-25710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Pauli, Jutta A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared N2 - There is an increasing interest in chromophores absorbing and emitting in the near-infrared (NIR) spectral region, e.g., for applications as fluorescent reporters for optical imaging techniques and hence, in reliable methods for the characterization of their signal-relevant properties like the fluorescence quantum yield (Φf) and brightness. The lack of well established Φf standards for the NIR region in conjunction with the need for accurate Φf measurements in transparent and scattering media encouraged us to built up an integrating sphere setup for spectrally resolved measurements of absolute fluorescence traceable to radiometric scales. Here, we present the design of this setup and its characterization and validation including an uncertainty budget for the determination of absolute Φf in the visible and NIR. To provide the basis for better measurements of Φf in the spectral window from ca. 600 to 1000 nm used, e.g., for optical imaging, the absolute Φf of a set of NIR chromophores covering this spectral region are measured and compared to relative values obtained using rhodamine 101 as Φf standard. Additionally, the absolute Φf values of some red dyes that are among the most commonly used labels in the life sciences are presented as well as the absolute quantum yield of an optical probe for tumor imaging. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Dye KW - Uncertainty KW - Absolute quantum yield KW - Method comparison KW - Integrating sphere KW - NIR KW - Standards KW - Quantum yield standards PY - 2012 U6 - https://doi.org/10.1021/ac2021954 SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 3 SP - 1345 EP - 1352 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodenius, M. A1 - Würth, Christian A1 - Jayapaul, J. A1 - Wong, J. E. A1 - Lammers, T. A1 - Gätjens, J. A1 - Arns, S. A1 - Mertens, N. A1 - Slabu, I. A1 - Ivanova, G. A1 - Bornemann, J. A1 - De Cuyper, M. A1 - Resch-Genger, Ute A1 - Kiessling, F. T1 - Fluorescent magnetoliposomes as a platform technology for functional and molecular MR and optical imaging N2 - Here, we present a detailed characterisation of rhodamine B-containing magnetoliposomes (FLU-ML), emphasising the dependence of their fluorescence properties on the presence of iron oxide cores, and the molar fraction of the fluorophore. The magnetoliposome types used exist as colloidally stable, negatively charged clusters with an average hydrodynamic diameter of 95 nm. The molar rhodamine B fractions were 0.67 % and 1.97 %. Rhodamine B normalised fluorescence, quantum yields and fluorescence lifetimes were substantially reduced by inner filter effects as the magnetoliposome concentration is increased, by increasing molar rhodamine B fraction, and by quenching originating from the iron oxide cores. MR relaxometry at 3 T revealed extremely high r2 relaxivities (440 to 554 s-1mM-1) and moderately high r1 values (2.06 to 3.59 s-1mM-1). Upon incubating human prostate carcinoma (PC-3) cells with FLU-ML, a dose-dependent particle internalisation was found by MR relaxometry. In addition, the internalised FLU-ML were clearly visible by fluorescence microscopy. At the FLU-ML concentrations used (up to 3 × 103 M Fe) cell viability was not substantially impaired. These results provide valuable insights on the fluorescence properties of bimodal magnetoliposomes and open promising perspectives for the use of these materials as a platform technology for advanced functional and molecular MR and optical imaging applications. KW - Fluorescent magnetoliposomes KW - Steady state and time resolved fluorometry KW - Quantum yield KW - Fluorescence lifetimes KW - MR relaxivities KW - PC-3 cells KW - Cell viability PY - 2012 U6 - https://doi.org/10.1002/cmmi.467 SN - 1555-4309 SN - 1555-4317 VL - 7 IS - 1 SP - 59 EP - 67 PB - Wiley CY - Chichester AN - OPUS4-25577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Schüttrigkeit, T. A1 - Franzl, T. A1 - Resch-Genger, Ute T1 - Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions N2 - The commercial availability of stand-alone setups for the determination of absolute photoluminescence quantum yields (φf) in conjunction with the increasing use of integrating sphere accessories for spectrofluorometers is expected to have a considerable influence not only on the characterization of chromophore systems for use in optical and opto-electronic devices, but also on the determination of this key parameter for (bio)analytically relevant dyes and functional luminophores. Despite the huge potential of systems measuring absolute φf values and the renewed interest in dependable data, evaluated protocols for even the most elementary case, the determination of the fluorescence quantum yield of transparent dilute solutions of small organic dyes with integrating sphere methods, are still missing. This encouraged us to evaluate the performance and sources of uncertainty of a simple commercial integrating sphere setup with dilute solutions of two of the best characterized fluorescence quantum yield standards, quinine sulfate dihydrate and rhodamine 101, strongly differing in spectral overlap between absorption and emission. Special attention is dedicated to illustrate common pitfalls of this approach, thereby deriving simple procedures to minimize measurement uncertainties and improve the comparability of data for the broad community of users of fluorescence techniques. KW - Lifetime KW - Fluorescence KW - Luminescence KW - Quantum yield KW - Quantum efficiency KW - Integrating sphere KW - Reabsorption KW - Rhodamine 101 KW - Quinine sulfate dihydrate KW - Method KW - Photoluminescence KW - Standard KW - Emission KW - Spectral correction KW - Excitation KW - Anisotropy PY - 2010 U6 - https://doi.org/10.1366/000370210791666390 SN - 0003-7028 SN - 1943-3530 VL - 64 IS - 7 SP - 733 EP - 741 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-22089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Laux, Eva-Maria A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Simple strategies towards bright polymer particles via one-step staining procedures N2 - In order to develop simple and versatile procedures for the preparation of red emissive particles, various one-step swelling procedures for the loading of fluorophores into nanometer- and micrometer-sized polystyrene particles were systematically assessed. Parameters studied for model dyes from common dye classes include the composition of the swelling medium, dye charge and polarity, dye concentration, and particle surface chemistry. The dye loading procedures were compared based upon the efficiency of dye incorporation, fluorescence intensity, and colloidal stability of the resulting particles as well as the absence of dye leaking as determined by absorption and fluorescence spectroscopy, flow cytometry, and measurements of zeta potentials. In addition, for the first time, the influence of the amount of incorporated dye on the absolute fluorescence quantum yield and brightness of the fluorescent particles was investigated for selected chromophores in differently sized particles using a custom-made calibrated integrating sphere setup. Our results demonstrate the general suitability of these one-step loading procedures for efficient particle staining with neutral, zwitterionic, and charged fluorophores like oxazines, coumarines, squaraines, xanthenes, and cyanines emitting in the visible and near infrared. Dye polarity was identified as a suitable tool to estimate the loading efficiency of fluorophores into these polymer particles. KW - Fluorescence KW - Polystyrene KW - Particles KW - Encapsulation KW - Quantum yield KW - Zeta potential KW - Method KW - Label KW - Particle KW - Polymer KW - Absolute fluorescence quantum yield KW - Fluorophore KW - Dye content KW - Surface groups KW - Size KW - Brightness PY - 2012 U6 - https://doi.org/10.1016/j.dyepig.2012.01.021 SN - 0143-7208 SN - 1873-3743 VL - 94 IS - 2 SP - 247 EP - 257 PB - Elsevier Ltd. CY - Kidlington AN - OPUS4-25481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grauel, Bettina A1 - Pons, Monika A1 - Frenzel, Florian A1 - Rissiek, P. A1 - Rücker, Kerstin A1 - Haase, Markus A1 - Resch-Genger, Ute T1 - Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis N2 - High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~9% and ~25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~9% (20% Yb3+) to ~7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~7% (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials. KW - Upconverion KW - Nanoparticle KW - Lanthanides KW - Quantum yield PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-551346 SP - 1 EP - 8 PB - Springer AN - OPUS4-55134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Güttler, Arne A1 - Richter, Maria A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - New Reference Materials for Quantification and Standardization of Fluorescence-based Measurements N2 - Luminescence techniques are amongst the most commonly used analytical methods in the life and material sciences due to their high sensitivity and non-destructive and multiparametric character. Photoluminescence signals are, however, affected by wavelength-, polarization-, and time-dependent instrument specific effects and the compound-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements, while the relative determination of the latter requires suitable quantum yield standards with well-known photoluminescence quantum yields. For the simple correction of instrument specific effects in the wavelength region of 300 nm to 950 nm, the set of the five certified spectral fluorescence standards (CRM) BAM-F001 – BAM-F005, has been extended to the NIR range by including two new fluorescence standards currently under certification. T2 - 17th conference on Methods and Applications in Fluorescence CY - Gothenburg, Sweden DA - 11.09.2022 KW - Luminescence KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Certified reference material KW - Standard PY - 2022 AN - OPUS4-56441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le Guevel, X. A1 - Wegner, Karl David A1 - Würth, Christian A1 - Baulin, V. A. A1 - Musnier, B. A1 - Josserand, V. A1 - Resch-Genger, Ute A1 - Koll, J-C T1 - Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging N2 - The influence of solvent polarity and surface ligand rigidification on the SWIR emission profile of gold nanoclusters with an anistropic surface was investigated. A strong enhancement of the SWIR emission band at 1200 nm was observed when measuring in different local environments: in solution, in polymer composites, and in solids. SWIR in vivo imaging of mice assisted by deep learning after intravenous administration of these gold nanoclusters provides high definition pseudo-3D views of vascular blood vessels. KW - Nano KW - Nanomaterial KW - Metal cluster KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Ligand KW - Gold KW - Mechanism KW - Charge transfer KW - Enhancement strategy KW - Imaging KW - Application KW - Contrast agent PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543582 VL - 58 IS - 18 SP - 2967 EP - 2970 PB - RSC AN - OPUS4-54358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537193 SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Weigert, Florian A1 - Andresen, Elina A1 - Grauel, Bettina A1 - Wegner, Karl David T1 - Semiconductor (SCNC) & Upconversion Nanocrystals (UCNC) – Optical Properties, Applications & Challenges N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and shortwave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of Pand demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - 27th Annual Meeting of the Slovenian Chemical Society CY - Portoroz-Portorose, Slovenia DA - 21.09.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis KW - Semiconductur KW - Quantum dot KW - Nanocrystal KW - SWIR PY - 2021 AN - OPUS4-53723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -