TY - JOUR A1 - Vogler, Nico A1 - Drabetzki, Philipp A1 - Lindemann, Mathias A1 - Kühne, Hans-Carsten T1 - Description of the concrete carbonation process with adjusted depth resolved thermogravimetric analysis JF - Journal of Thermal Analysis and Calorimetry N2 - The thermal gravimetric analysis (TG) is a common method for the examination of the carbonation progress of cement-based materials. Unfortunately, the thermal properties of some components complicate the evaluation of TG results. Various hydrate phases, like ettringite (AFt), C-S-H and AFm decompose almost simultaneously in the temperature range up to 200 °C. Additionally, physical bound water is released in the same temperature range. In the temperature range between 450 °C and 600 °C the decomposition of calcium hydroxide and amorphous or weakly bound carbonates takes place simultaneously. Carbonates, like calcite, from limestone powder or other additives may be already contained in the noncarbonated sample material. For this research an attempt was made to minimise the influence of these effects. Therefore, differential curves from DTG-results of non-carbonated areas and areas with various states of carbonation of the same sample material were calculated and evaluated. Concretes based on three different types of cement were produced and stored under accelerated carbonation conditions (1 % CO2 in air). The required sample material was obtained by cutting slices from various depth of previously CO2-treated specimen and subsequent grinding. During the sample preparation, a special attention was paid that no additional carbonation processes took place. As reference method for the determination of the carbonation depth the sprayed application of phenolphthalein solution was carried out. Microscopic analysis where examined to confirm the assumptions made previously. Furthermore, the observed effect of encapsulation of calcium hydroxide by carbonates caused by the accelerated carbonation conditions was examined more closely. KW - Microscopy KW - Accelerated carbonation KW - Carbonation behaviour KW - Concrete KW - Thermal Analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530571 DO - https://doi.org/10.1007/s10973-021-10966-1 VL - 147 IS - 11 SP - 1 EP - 14 PB - Springer AN - OPUS4-53057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Moye, J. A1 - Gluth, Gregor A1 - Vogler, Nico A1 - Taffe, A. A1 - Kühne, Hans-Carsten ED - Rossignol, S. ED - Gluth, Gregor T1 - Properties of alkali-activated mortars with salt aggregate for sealing structures in evaporite rock JF - Open Ceramics N2 - Concrete structures for sealing of tunnels in the host rock are an essential part of systems for nuclear waste storage. However, concretes based on blended cements or magnesium oxychloride cements, which are commonly considered for this application, can deteriorate severely due to a significant heat of hydration and associated deformation and cracking. Alkali-activated materials (AAMs) offer a potential solution to this problem because of their low heat release during hardening. To explore their suitability for the construction of sealing structures in evaporite rock, various AAMs with salt aggregate were studied regarding fresh properties, heat release, mechanical properties and microstructure. The heat of reaction of the AAMs was up to 55% lower than that of a blended cement designed for sealing structures, indicating significant benefits for the intended application. Other relevant properties such as mechanical strength and permeability depended strongly on the mix-design of the AAMs and curing conditions. KW - Alkali-activated materials KW - Geopolymers KW - Nuclear waste storage KW - Sealing structures KW - Evaporite rock PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519422 DO - https://doi.org/10.1016/j.oceram.2020.100041 SN - 2666-5395 VL - 5 IS - Special issue: Alkali-activated materials and geopolymers in ceramics and beyond SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-51942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Vogler, Nico A1 - Sturm, Patrick A1 - Neubert, M. A1 - Schröder, H.-J. A1 - Kühne, Hans-Carsten A1 - Hünger, K.-J. A1 - Gluth, Gregor T1 - Calcined brick clays and mixed clays as supplementary cementitious materials: Effects on the performance of blended cement mortars JF - Construction and Building Materials N2 - While calcined clays in general have been credited with a great potential to mitigate CO2 emissions related to cement production and consumption, calcined brick clays are currently understudied in this regard. In the present work, two brick clays, a low-grade kaolinitic clay, and a mixed clay composed of 50% brick clay and 50% low-grade kaolinitic clay were studied regarding transformations on calcination, and strength and durability performance as well as pore structure of mortars made with the blended cements. All calcined clays exhibited pozzolanic reactivity, with the performance of the brick clays inferior to the low-grade kaolinitic clay. However, the mixed clay performed very similar to the low-grade kaolinitic clay, which points to a viable option for optimal use of brick clays in cementitious systems. The carbonation resistance of the blended cement mortars was generally worse than that of the plain Portland cement mortar, as expected, but the former exhibited a significantly improved chloride penetration resistance. The latter improvement was due to pore structure refinement in the blended cement mortars, compared to the Portland cement mortar. KW - Brick clay KW - Illitic clay KW - Calcined clay KW - Blended cement KW - Supplementary cementitous materials PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2020.120990 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 266 SP - 120990 PB - Elsevier Ltd. AN - OPUS4-51362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -