TY - JOUR A1 - Rienitz, O. A1 - Schiel, D. A1 - Görlitz, V. A1 - Jährling, R. A1 - Vogl, Jochen A1 - Lara-Manzano, J.V. A1 - Zon, A. A1 - Fung, W.-H. A1 - Buzoianu, M. A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Valiente, L. A1 - Yim, Y.-H. A1 - Hill, S. A1 - Champion, R. A1 - Fisicaro, P. A1 - Bing, W. A1 - Turk, G.C. A1 - Winchester, M. R. A1 - Saxby, D. A1 - Merrick, J. A1 - Hioki, A. A1 - Miura, T. A1 - Suzuki, T. A1 - Linsky, M. A1 - Barzev, A. A1 - Máriássy, M. A1 - Cankur, O. A1 - Ari, B. A1 - Tunc, M. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Bezruchko, M. T1 - Final report on CCQM-K87: Mono-elemental calibration solutions N2 - The aim of this comparison was to demonstrate the capability of national metrology institutes to measure elemental mass fractions at a level of w(E) ≈ 1 g/kg as found in almost all mono-elemental calibration solutions. These calibration solutions represent an important link in traceability systems in inorganic analysis. Virtually all traceable routine measurements are linked to the SI through these calibration solutions. Every participant was provided with three solutions of each of the three selected elements chromium, cobalt and lead. This comparison was a joint activity of the Inorganic Analysis Working Group (IAWG) and the Electrochemical Analysis Working Group (EAWG) of the CCQM and was piloted by the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) with the help of the Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin, Germany), the Centro Nacional de Metrología (CENAM, Querétaro, Mexico) and the National Institute of Standards and Technology (NIST, Gaithersburg, USA). A small majority of participants applied inductively coupled plasma optical emission spectrometry (ICP OES) in combination with a variety of calibration strategies (one-point-calibration, bracketing, calibration curve, each with and without an internal standard). But also IDMS techniques were carried out on quadrupole, high resolution and multicollector ICP-MS machines as well as a TIMS machine. Several participants applied titrimetry. FAAS as well as ICP-MS combined with non-IDMS calibration strategies were used by at least one participant. The key comparison reference values (KCRV) were agreed upon during the IAWG/EAWG meeting in November 2011 held in Sydney as the added element content calculated from the gravimetric sample preparation. Accordingly the degrees of equivalence were calculated. Despite the large variety of methods applied no superior method could be identified. The relative deviation of the median of the participants' results from the gravimetric reference value was equal or smaller than 0.1% (with an average of 0.05%) in the case of all three elements. KW - CCQM KW - Metrology KW - IDMS PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08010, 1A (Technical Supplement 2012) SP - 1 EP - 104 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sargent, M A1 - Goenaga-Infante, H A1 - Inagaki, K A1 - Ma, L A1 - Meija, J A1 - Pramann, A A1 - Rienitz, O A1 - Sturgeon, R A1 - Vogl, Jochen A1 - Wang, J A1 - Yang, L T1 - The role of ICP-MS in inorganic chemical metrology N2 - ICP-MS has played a key role in inorganic chemical metrology for 25 years, from the 1993 CIPM feasibility study which led to establishment of the CCQM. Since that time, the Inorganic Analysis Working Group of the CCQM has organised 56 international comparisons involving measurements by ICP-MS and, in a recent comparison, 16 different national institutes submitted their results using the technique. Metrological applications of ICP-MS currently address an enormous range of measurements using a wide variety of instrumentation, calibration strategies and methodologies. This review provides an overview of the ICP-MS field with an emphasis on developments which are of particular relevance to chemical metrology. Examples from CCQM comparisons and the services available from the participants are used to illustrate how the capability and scope of ICP-MS methods have expanded far beyond the expectations of 1993. This is due in part to the research and development Programmes of the national institutes which participate in the CCQM. They have played a key role in advancing new instrumentation and applications for elemental analysis, isotope dilution mass spectrometry, determination of isotopic ratio or composition, and speciation of organometallic compounds. These developments are continuing today, as demonstrated by work in new fields such as heteroatom quantitation of proteins, characterisation and counting of nanoparticles using spICP-MS, and LA-ICP-MS analysis of solid materials. KW - CCQM KW - Metrology KW - Interlaboratory comparison KW - ICP-MS KW - Mass spectrometry KW - Hyphenated KW - Isotope ratio PY - 2019 DO - https://doi.org/10.1088/1681-7575/ab0eac VL - 56 IS - 3 SP - 034005 PB - IOP Publishing AN - OPUS4-47929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Calibration of Mg isotope amount ratios and delta values N2 - In the past, δ26/24Mg measurements were referenced to NIST SRM 980, the initial zero of the δ26/24Mg scale. With the development of MC-ICPMS, the detection of small but measurable isotopic differences in different chips of SRM 980 became apparent. To solve this problem a suite of magnesium isotope reference materials, ERM-AE143, -AE144 and -AE145, has been certified in a first study by applying an ab initio calibration for absolute Mg isotope ratios without any a priori assumptions, a procedure which fulfils all requirements of a primary method of measurement. We could achieve for the first time measurement uncertainties for isotope amount ratios close to the typical precision of magnesium delta values, δ26/24Mg, which are at the 0.1 ‰ level (2SD). In addition, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multi-collector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ to 0.7 ‰. With these isotope reference materials, it is possible to establish SI-traceability for magnesium delta measurements. To realize this, we organized a second study within which five expert laboratories participated to cross-calibrate all available magnesium isotope standards, which are NIST SRM 980, IRMM-009, ERM-AE143, ERM-AE144, ERM-AE145 and the standards DSM3 and Cambridge-1. The mean δ26/24Mg values for the individual iRMs, calculated from the laboratory means show 2 SD reproducibilities varying between 0.025 and 0.093 ‰. Propagated measurement uncertainties suggest a standard uncertainty of about 0.1‰ for δ26/24Mg determinations (2SD). Thus, SI traceability for magnesium isotope amount ratios and delta values is demonstrated to be established. T2 - 53rd annual conference of the DGMS including 27th ICP-MS User's Meeting CY - Münster, Germany DA - 01.03.2020 KW - Isotope ratio KW - Delta value KW - Metrology KW - Magnesium KW - Magnesium isotope ratios PY - 2020 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-50549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -