TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - Peplinski, Burkhard A1 - Wellendorf, Stephan T1 - Chemical reactions during the preparation of P and NPK fertilizers from thermochemically treated sewage sludge ashes JF - Soil science and plant nutrition KW - NPK fertilizer KW - P fertilizer KW - Phosphorus recycling KW - Sewage sludge ash KW - Urban mining PY - 2010 DO - https://doi.org/10.1111/j.1747-0765.2010.00485.x SN - 0038-0768 SN - 1747-0765 VL - 56 IS - 4 SP - 627 EP - 635 PB - Blackwell Publ. Asia CY - Tokyo, Japan AN - OPUS4-21924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - Unger, M. T1 - Heavy metal removal from sewage sludge ash analyzed by thermogravimetry JF - Journal of thermal analysis and calorimetry N2 - A high temperature (1000 °C) thermochemical process for heavy metal removal from sewage sludge ash via the chloride pathway was investigated by thermogravimetry/differential thermal analysis (TG/DTA). TG and DTA measurements gave information about secession and evaporation of water, HCl, and heavy metal chlorides at different temperatures. Additionally, gaseous water and hydrochloric acid which occurred in the process were detected by an FT-IR detector that was coupled to the TG/DTA-system. Heavy metal chlorides which were also formed in the process cannot be detected by this technique. For that reason the outlet gas of the TG/DTA-system was discharged into washing flasks filled with water for absorption. The washing flasks were replaced in temperature steps of 50 °C and the heavy metal concentrations of the solutions were determined by ICP-OES. The temperature-dependent formation/evaporation of different heavy metal chlorides was analyzed and compared for two different thermochemical processes using magnesium chloride hydrate or calcium chloride hydrate as Cl-donors. In both cases evaporation of Cd, Cu, Pb, and Zn was observed from 600 °C, whereas As, Cr, and Ni remained in the solid state. The results were discussed against the background of thermodynamic calculations. KW - Sewage sludge ash KW - Heavy metal chloride KW - Thermodynamic simulation KW - Thermogravimetry/FT-IR PY - 2011 DO - https://doi.org/10.1007/s10973-010-0966-7 SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 103 SP - 243 EP - 248 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-23157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Kohl, Anka A1 - Adam, Christian T1 - Spectroscopic investigation in the mid- and far-infrared regions of phosphorus fertilizers derived from thermochemically treated sewage sludge ash JF - Applied spectroscopy N2 - Inorganic phosphorus and nitrogen-phosphorus-potassium (NPK) fertilizers based on phosphates from thermochemically treated sewage sludge ash were analyzed using mid-infrared (mid-IR) and far-infrared (FIR) spectroscopy. The different compounds present in the fertilizers were qualitatively determined with the help of recorded reference spectra of pure substances. Differentiation between various phosphates and other compounds such as sulfates, nitrates, and oxides was possible using combined interpretation of the mid-IR and FIR spectra. The results are in agreement with previous X-ray diffraction (XRD) measurements of the same samples. The main phosphate phases detected were NH4H2PO4, MgHPO4·3H2O, Mg3(PO4)2, Ca5(PO4)5Cl, CaHPO4·2H2O, Ca(H2-PO4)2·H2O, and AlPO4. Furthermore, K2SO4, NH4NO3, Fe2O3, and SiO2 were identified in the IR spectra. However, ammonium and sulfate compounds were only identified in the mid-IR region but were not detectable in the FIR region. KW - Sewage sludge ash KW - Fertilizer KW - P-fertilizer KW - Phosphorus compounds KW - Mid-infrared spectroscopy KW - Far-infrared spectroscopy PY - 2011 DO - https://doi.org/10.1366/10-06168 SN - 0003-7028 SN - 1943-3530 VL - 65 IS - 3 SP - 265 EP - 271 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-23270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian T1 - Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochlorid acid JF - Environmental science & technology N2 - Sewage sludge ash (SSA) is a suitable raw material for fertilizers due to its high phosphorus (P) content. However, heavy metals must be removed before agricultural application and P should be transferred into a bioavailable form. The utilization of gaseous hydrochloric acid for thermochemical heavy metal removal from SSA at approximately 1000 °C was investigated and compared to the utilization of alkaline earth metal chlorides. The heavy metal removal efficiency increased as expected with higher gas concentration, longer retention time and higher temperature. Equivalent heavy metal removal efficiency were achieved with these different Cl-donors under comparable conditions (150 g Cl/kg SSA, 1000 °C). In contrast, the bioavailability of the P-bearing compounds present in the SSA after thermal treatment with gaseous HCl was not as good as the bioavailability of the P-bearing compounds formed by the utilization of magnesium chloride. This disadvantage was overcome by mixing MgCO3 as an Mg-donor to the SSA before thermochemical treatment with the gaseous Cl-donor. A test series under systematic variation of the operational parameters showed that copper removal is more depending on the retention time than the removal of zinc. Zn-removal was declined by a decreasing ratio of the partial pressures of ZnCl2 and water. KW - Phosphorus recycling KW - Sewage sludge ash KW - Heavy metal elimination KW - Urban mining PY - 2011 DO - https://doi.org/10.1021/es2007319 SN - 0013-936X SN - 1520-5851 VL - 45 IS - 17 SP - 7445 EP - 7450 PB - ACS Publ. CY - Washington, DC AN - OPUS4-24170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Reuther, H. A1 - Vogel, Christian A1 - Adamczyk, Burkart A1 - Menzel, Michael A1 - Emmerling, Franziska A1 - Simon, Franz-Georg T1 - First identification of the tridymite form of AlPO4 in municipal sewage sludge ash JF - Zeitschrift für Kristallographie N2 - Sewage sludge and sewage sludge ashes (SSA) are produced in huge amounts at municipal waste water treatment plants (WWTP) all around the world and have become an issue for many urbanized areas. To deal with this unceasing mass flow in an ecologically and economically responsible way a comprehensive chemical and structural characterization of all types of SSA is needed. X-ray powder diffraction (XRD) is one of the most promising analytical methods for this task. Although, there has been ample chemical evidence showing that many SSA contain aluminium phosphate as a major component up to now no aluminium phosphate or aluminium-rich mixed phosphate phase has been reported to be identified by XRD in a SSA produced at a mono-incineration facility. The outcome of the present com-bined XRD and Mossbauer spectroscopy investigation provides comprehensive evidence closing this gap for the first time. KW - Aluminium phosphate KW - AlPO4 KW - Tridymite KW - Sewage sludge ash KW - Incinerator KW - Ash PY - 2011 DO - https://doi.org/10.1524/zkpr.2011.0067 SN - 0044-2968 VL - 1 SP - 443 EP - 448 PB - Oldenbourg CY - München AN - OPUS4-24297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Exner, Robert A1 - Adam, Christian T1 - Heavy metal removal from sewage sludge ash by thermochemical treatment with polyvinylchloride JF - Environmental science & technology N2 - Sewage sludge ash (SSA) is a prospective phosphorus source for the future production of recycling P-fertilizers. Due to its high heavy metals contents and the relatively low P plant-availability, SSA must be treated before agricultural utilisation. In this paper SSA was thermochemically treated with PVC in a bench-scale rotary furnace in order to remove heavy metals via the chloride pathway. PVC has a high Cl-content of 52–53% and a high heating value that can be beneficially used for the thermochemical process. Large amounts of waste PVC are already recovered in recycling processes, but there are still some fractions that would be available for the proposed thermochemical process, for example, the low quality near-infrared(NIR)-fraction from waste separation facilities. Heavy metals were effectively removed at temperatures in the range of 800–950°C via the gas phase by utilisation of PVC as Cl-donor. The resulting P plant-availability was comparable to SSA thermochemically treated with MgCl2 as Cl-donor if MgO was used as an additive (Mg-donor). A further increase of the plant availability of phosphorus was achieved by acid post-treatment of the thermochemically treated SSA. KW - Phosphorus recovery KW - Sewage sludge ash KW - Heavy metal removal KW - Polyvinylchloride (PVC) PY - 2013 DO - https://doi.org/10.1021/es300610e SN - 0013-936X SN - 1520-5851 VL - 47 IS - 1 SP - 563 EP - 567 PB - ACS Publ. CY - Washington, DC AN - OPUS4-27556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - McNaughton, D. T1 - Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy JF - Applied spectroscopy N2 - The chemical form of phosphate phases in sewage sludge ash (SSA)-based fertilizers was determined by Raman microspectroscopy. Raman mapping with a lateral resolution of 5 × 5 µm² easily detected different compounds present in the fertilizers with the help of recorded reference spectra of pure substances. Quartz and aluminosilicates showed Raman bands in the range of 450-520 cm-1. Phosphates with apatite structure and magnesium triphosphate were determined at around 960 and 980 cm-1, respectively. Furthermore, calcium/magnesium pyrophosphates were detected in some samples. KW - Fertilizer KW - Sewage sludge ash KW - Phosphate KW - Raman microspectroscopy PY - 2013 DO - https://doi.org/10.1366/12-06955 SN - 0003-7028 SN - 1943-3530 VL - 67 IS - 9 SP - 1101 EP - 1105 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-28999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - Sekine, R. A1 - Schiller, T. A1 - Lipiec, E. A1 - McNaughton, D. T1 - Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy JF - Applied spectroscopy N2 - The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate. KW - Fertilizer KW - Phosphate-bearing mineral phases KW - Raman microspectroscopy KW - Sewage sludge ash KW - Soil KW - Synchrotron infrared microspectroscopy PY - 2013 DO - https://doi.org/10.1366/13-07056 SN - 0003-7028 SN - 1943-3530 VL - 67 IS - 10 SP - 1165 EP - 1170 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-29268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - Kappen, P. A1 - Schiller, T. A1 - Lipiec, E. A1 - McNaughton, D. T1 - Chemical state of chromium in sewage sludge ash based phosphorus-fertilisers JF - Chemosphere N2 - Sewage sludge ash (SSA) based P-fertilisers were produced by thermochemical treatment of SSA with Cl-donors at approximately 1000 °C. During this thermochemical process heavy metals are separated as heavy metal chlorides via the gas phase. Chromium cannot be separated under normal conditions. The risk of the development of toxic Cr(VI) during the thermochemical process was investigated. X-ray Absorption Spectroscopy measurements showed that SSA and thermochemically treated SSA with CaCl2, MgCl2 and NaCl contain Cr(III) compounds only. In contrast, treating SSA with elevated quantities of Na2CO3, to enhance the plant-availability of the phosphate phases of the fertiliser, developed approximately 10–15% Cr(VI). Furthermore, Raman microspectroscopy showed that using Mg-carbonate reduces the risk of a Cr(VI) development during thermochemical treatment. Additionally, leaching tests showed that only a Cr–water solubility >10% is an indicator for Cr(VI) in SSA based P-fertilisers. KW - Chromium KW - Fertiliser KW - Sewage sludge ash KW - Raman microspectroscopy KW - X-ray absorption spectroscopy PY - 2014 DO - https://doi.org/10.1016/j.chemosphere.2013.12.012 SN - 0045-6535 SN - 0366-7111 VL - 103 SP - 250 EP - 255 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-30062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Schäfers, F. A1 - Adam, Christian T1 - Chemical state of chromium, sulfur, and iron in sewage sludge ash based phosphorus fertilizers JF - ACS sustainable chemistry & engineering N2 - As an essential element of all life forms, phosphorus (P) is vital to the fertilizer industry. With decreasing quantity and quality of phosphate rock resources, recycling P-fertilizers from wastewater is of increasing interest. The P-fertilizer products of a recently developed thermochemical process for P recovery from sewage sludge ash (SSA) were investigated by chromium, sulfur, and iron K-edge X-ray near-edge structure (XANES) spectroscopy. This paper focuses the formation and prevention of toxic chromium(VI) and toxic sulfides during the thermochemical processes. Reducing conditions prevent the oxidation of chromium(III) in the SSA to toxic chromium(VI). Sulfides formed under the reducing conditions are nontoxic iron sulfides. Hematite (Fe2O3) present in the SSA is reduced to magnetite (Fe3O4). A gentle post-treatment at 400 °C under oxidizing conditions converts the iron sulfides into plant-available iron sulfates. This oxidative post-treatment does not form undesired chromium(VI) compounds. KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Phosphorus recovery KW - Sewage sludge ash KW - Chromium KW - Sulfur KW - Iron PY - 2015 DO - https://doi.org/10.1021/acssuschemeng.5b00678 SN - 2168-0485 VL - 3 IS - 10 SP - 2376 EP - 2380 PB - ACS Publ. CY - Washington, DC AN - OPUS4-34166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Stemann, Jan A1 - Holldack, K. A1 - Sekine, R. A1 - Lipiec, E. A1 - Adam, Christian T1 - Thermal treatment of chromium (III) oxide with carbonates analyzed by far-infrared spectroscopy JF - Applied Spectroscopy PY - 2015 SN - 0003-7028 SN - 1943-3530 VL - 69 IS - 10 SP - 1210 EP - 1214 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-34635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Rivard, C. A1 - Tanabe, I. A1 - Adam, Christian T1 - Microspectroscopy – promising techniques to characterize phosphorus in soil JF - COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS N2 - Phosphorus (P) is an essential element for all forms of life and is applied as fertilizer in agriculture. The P availability for plants may be highly dependent on the chemical state of P in fertilizers and soils; however, the nature of this dependence remains obscure due to the limitations of generally applied wet chemical and instrumental analytical approaches. This paper focuses on recently developed infrared, Raman, ultraviolet and X-ray microspectroscopic techniques for the characterization of P in soil. Microspectroscopic techniques have the advantage that discrete P phases can be distinguished and characterized even if their mass fractions are very low. However, only small volumes of soil can be analyzed by microspectroscopic methods hence a combination of macro- and microspectroscopic techniques is a promising concept. KW - Infrared KW - Microspectroscopy KW - Phosphorus KW - Raman KW - Soil KW - Ultraviolet KW - X-ray absorption near-edge structure (XANES) PY - 2016 DO - https://doi.org/10.1080/00103624.2016.1228942 SN - 0010-3624 SN - 1532-2416 VL - 47 IS - 18 SP - 2088 EP - 2102 AN - OPUS4-38341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Krüger, Oliver A1 - Adam, Christian T1 - Thermochemical treatment of sewage sludge ash with sodium additives under reducing conditions analyzed by thermogravimetry JF - Journal of thermal analysis and calorimetry N2 - Phosphorus (P) for fertilizer use can be recovered from sewage sludge ash (SSA). To enhance the bioavailability of P and reduce the heavy metal content of SSA, it can be treated thermochemically with Na2CO3 or Na2SO4 at 950 °C in a rotary kiln using dry sewage sludge or lignite as reducing agent. These processes were investigated by thermogravimetry/differential thermal analysis coupled with gas analysis. Reducing conditions in this experimental setup were provided by 2 % hydrogen in the Ar carrier gas. During SSA + Na2CO3 treatment CO2, CO and water were detected in the off-gas. During SSA + Na2SO4 treatment SO2, some CO2 and water were detected. Heavy metal removal was more efficient for SSA + Na2CO3 compared to the sulfate variant. A SSA + Na2SO4 + lignite variant which also formed CO shifted the heavy metal removal to the results obtained with Na2CO3 which was obviously due to the additional reduction potential. However, Zn evaporation was not achieved with the Na2SO4 variants which were most probably due to immobilization as ZnS. KW - Phosphorus recovery KW - Thermochemical treatment KW - Sewage sludge ash KW - Reducing conditions KW - Heavy metal evaporation KW - FT-IR gas analysis PY - 2016 DO - https://doi.org/10.1007/s10973-015-5016-z SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 123 IS - 2 SP - 1045 EP - 1051 PB - Springer CY - Dordrecht AN - OPUS4-34556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Krüger, Oliver A1 - Herzel, Hannes A1 - Amidani, L. A1 - Adam, Christian T1 - Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers JF - Journal of Hazardous Materials N2 - Phosphorus-fertilizers from secondary resources such as sewage sludge ash (SSA) will become more important in the future as they could substitute conventional fertilizers based on the nonrenewable resource phosphate rock. Thermochemical approaches were developed which remove heavy metals from SSA prior to its fertilizer application on farmlands. We analyzed the chemical state of mercury and selenium in SSA before and after thermochemical treatment under different conditions for P-fertilizer production by X-ray absorption near edge structure (XANES) spectroscopy. In some incineration plants the mercury loaded carbon adsorber from off-gas cleaning was collected together with the SSA for waste disposal. SSAs from those plants contained mercury mainly bound to carbon/organic material. The other SSAs contained inorganic mercury compounds which are most probably stabilized in the SSA matrix and were thus not evaporated during incineration. During thermochemical treatment, carbon-bound mercury was removed quantitatively. In contrast, a certain immobile fraction of inorganic mercury compounds remained in thermochemically treated SSA, which were not clearly identified. HgSe might be one of the inorganic compounds, which is supported by results of Se K-edge XANES spectroscopy. Furthermore, the chemical state of selenium in the SSAs was very sensitive to the conditions of the thermochemical treatment. KW - X-ray absorption near edge structure (XANES) spectroscopy KW - Phosphorus recovery KW - Sewage sludge ash KW - Mercury KW - Selenium KW - Mercury selenide (HgSe) PY - 2016 UR - http://dx.doi.org/10.1016/j.jhazmat.2016.03.079 DO - https://doi.org/10.1016/j.jhazmat.2016.03.079 VL - 313 SP - 179 EP - 184 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Oliver A1 - Fiedler, F. A1 - Adam, Christian A1 - Vogel, Christian A1 - Senz, R. T1 - Determination of chromium (VI) in primary and secondary fertilizer and their respective precursors JF - Chemosphere N2 - Hexavalent chromium species (Cr(VI)) are often carcinogenic, of high acute toxicity, highly mobile, and thus pose a severe risk to health and environment. Fertilizers usually contain significant amounts of chromium. Therefore, a reliable analysis of chromium and the fraction of Cr(VI) are crucial for safe use of fertilizers. This problem is expected to increase in the future, since more and more recycled fertilizers emerge due to increasing fertilizer demand and respective supply risks. However, existing analytical methods have been developed for conventional fertilizers and have to be tested whether they are suitable for the new materials. Thus, we performed a wet-chemical extraction for Cr(VI) on several matrices as well as respective quality control experiments including spiking with Cr(III) and Cr(VI)compounds. We found the Cr(VI) amounts to be below 2 mg/kg except for a thermally post-treated sewage sludge ash (SSA) that showed 12.3 mg/kg. The presence of organic matter e.g. in sludge or precipitated struvite caused a reduction of spiked Cr(VI) and thus no satisfying recovery for Quality control. Cr(VI) reduction was also observed for SSA, presumably due to the presence of Fe(II) compounds. Even though the tested procedure can be hampered in some recycled fertilizer matrices, it might be adapted to be applicable also for these complex samples. KW - Chromium speciation KW - Recycling fertilizers KW - Matrix dependencies PY - 2017 DO - https://doi.org/10.1016/j.chemosphere.2017.05.011 SN - 0045-6535 VL - 182 SP - 48 EP - 53 PB - Elsevier CY - Amsterdam AN - OPUS4-40101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Ramsteiner, M. A1 - Sekine, R. A1 - Doolette, A. A1 - Adam, Christian T1 - Characterization of phosphorus compounds in soils by deep ultraviolet (DUV) Raman microspectroscopy JF - Journal of Raman Spectroscopy N2 - Deep ultraviolet Raman microspectroscopy was successfully investigated as a new approach to analyze the chemical state of phosphorus compounds directly in soil. We demonstrate that ultraviolet excitation has the advantage to avoid the interference with the strong fluorescence, which occurs in the visible spectral range caused by organic matter in soils. Furthermore, the spatial resolution of <1 μm2 enables the detection of very small phosphorus particles. For some organic phosphorus compounds (β-glycerophosphate, aminomethylphosphonic acid), sample cooling to -100 °C is found to strongly reduce the rate of degradation induced by the illumination with the ultraviolet excitation light. However, phytic acid and adenosine monophosphate degraded even with cooling. Our results reveal the capability of deep ultraviolet Raman microspectroscopy as a high-resolution benchtop imaging technique for the analysis of local interactions between soil compounds with the potential to become an analytical key to improve the understanding of transformation mechanisms of phosphates as well as other mineral phases in soils. KW - Phosphorus speciation KW - Deep ultraviolet (DUV) Raman microspectroscopy KW - Soil PY - 2017 DO - https://doi.org/10.1002/jrs.5115 SN - 0377-0486 VL - 48 IS - 6 SP - 867 EP - 871 PB - Wiley AN - OPUS4-40508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Adam, Christian A1 - Steffens, D. T1 - Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance JF - Waste Management N2 - Sewage sludge has one of the highest phosphorus (P) recovery potentials of all waste materials. Therefore, P-recycling from sewage sludge could contribute to closing the P-cycle. Recently, various thermal processes for P-recovery have been developed, but there is still a demand for information on the effect of different process parameters (e.g. additives and temperature) on P-speciation and especially on the fertilization performance. In the present study, two common methods (low-temperature conversion at 400–500 °C and thermochemical treatment at 950 °C) were investigated and combined to produce highly bioavailable P-fertilizers from two different types of sewage sludge based on chemical phosphorus precipitation (Chem-P) and enhanced biological phosphorus removal (Bio-P). The results of P-fractionation, X-ray diffraction analysis, and pot experiments with maize showed that Bio-P sludges attain high P-plant-availability after treatment at low temperatures (400 °C). In contrast, Chem-P sludges can adequately be treated at higher temperatures under reductive conditions with sodium additives to form highly bioavailable calcium-sodium-phosphate. Additionally, also highly heavy-metal contaminated sludges can be thermochemically treated at high temperatures to achieve the legal requirements for fertilizers. KW - P-recovery KW - Low-temperature-conversion KW - Thermochemical treatment KW - P-fractionation KW - P-plant-availability KW - Sewage sludge PY - 2017 DO - https://doi.org/10.1016/j.wasman.2017.02.019 SN - 0956-053X VL - 62 SP - 194 EP - 203 AN - OPUS4-39907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Lombi, E. A1 - Steffens, D. A1 - Adam, Christian T1 - Phosphorus availability of sewage sludge-based fertilizers determined by the diffusive gradients in thin films (DGT) technique JF - Journal of Plant Nutrition and Soil Science N2 - The plant-availability of phosphorus (P) in fertilizers and soil can strongly influence the yield of agricultural crops. However, there are no methods to efficiently and satisfactorily analyze the plant-availability of P in sewage sludge-based P fertilizers except by undertaking time-consuming and complex pot or field experiments. We employed the diffusive gradients in thin films (DGT) technique to quantify the plant P availability of various types of P fertilizers with a novel focus on sewage sludge-based P fertilizers. Mixtures of fertilizer and soil were incubated for 3 weeks at 60% water holding capacity. DGT devices were deployed at the beginning of the incubation and again after 1, 2, and 3 weeks. Two weeks of incubation were sufficient for the formation of plant-available P in the fertilizer/soil mixtures. In a pot experiment, the DGT technique predicted maize (Zea mays L.) biomass yield and P uptake significantly more accurately than standard chemical extraction tests for P fertilizers (e.g., water, citric acid, and neutral ammonium citrate). Therefore, the DGT technique can be recommended as a reliable and robust method to screen the performance of different types of sewage sludge-based P fertilizers for maize cultivation minimizing the need for time-consuming and costly pot or field experiments. KW - Soil testing KW - Chemical extraction tests KW - Phosphate recovery KW - Plant growth experiments KW - Recycling PY - 2017 DO - https://doi.org/10.1002/jpln.201600531 VL - 180 IS - 5 SP - 594 EP - 601 PB - Wiley VCH Verlag AN - OPUS4-42413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Böhm, L. A1 - Heyde, B. A1 - Adam, Christian T1 - Fate of heavy metals and polycyclic aromatic hydrocarbons (PAH) in sewage sludge carbonisates and ashes – A risk assessment to a thermochemical phosphorus-recycling process JF - Waste Management N2 - In the near future, phosphorus (P) recycling will gain importance in terms of decreasing primary resources. Sewage sludge (SSL) is an adequate secondary P-resource for P-fertilizer production but it is also a sink for heavy metals and organic pollutants. The present study is an investigation on thermochemical P-recycling of SSL. Various temperatures and amendments were tested regarding their performance to remove heavy metals and polycyclic aromatic hydrocarbons (PAH) and simultaneous increase of the plant-availability of P. The investigations were carried out on two types of SSL originating from wastewater treatment plants with chemical P-precipitation and enhanced biological P-removal, respectively. The results show that thermochemical treatment with chlorine donors is suitable to remove the majority of heavy metals and that a combination of a gaseous chlorine donor (HCl) and sodium additives leads to both high heavy metal removal and high plant availability of P. Furthermore, plant experiments Show that almost all investigated thermochemical treatments can significantly reduce the bioavailability and plant uptake of heavy metals. Furthermore, PAHs are secondarily formed during low-temperature treatments (400–500 ° ), but can be significantly reduced by using sodium carbonate as an additive. KW - Fertilzer KW - Pollutant KW - Phosphorus PY - 2018 DO - https://doi.org/10.1016/j.wasman.2018.06.027 SN - 0956-053X VL - 78 SP - 576 EP - 587 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hermann, P. A1 - Kästner, B. A1 - Adamczyk, Burkart A1 - Hoehl, A. A1 - Ulm, G. A1 - Adam, Christian T1 - Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectroscopy JF - Corrosion Science N2 - The present study shows the potential of high-resolution imaging and nano-Fourier-transform infrared (nano-FTIR) spectroscopy for corrosion science. The protective oxidation layers of different chlorine-gas treated silicon carbides (SiCs) were characterized with these techniques. A nitrified SiC showed the highest resistant strength against chlorine corrosion at 1000 °C compared to the other SiCs. Nano-FTIR spectroscopy with a lateral resolution below 40 nm detected differences in the crystallinity of the bulk-SiC and in the transitional region to the protective layer. Furthermore, high-resolution imaging provides deep insight in the interfacial layer between bulk-SiC and the protective oxidation layer on sub-micrometer scale. KW - Nano-Fourier-transform infrared spectroscopy KW - Scattering-type scanning near-field optical microscopy (s-SNOM) KW - Synchrotron radiation KW - Corrosion KW - Silicon carbide KW - Chlorine PY - 2018 DO - https://doi.org/10.1016/j.corsci.2017.12.002 SN - 0010-938X VL - 131 SP - 324 EP - 329 PB - Elsevier AN - OPUS4-43648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Rivard, C. A1 - Wilken, V. A1 - Muskolus, A. A1 - Adam, Christian T1 - Performance of secondary P-fertilizers in pot experiments analyzed by phosphorus X-ray absorption near-edge structure (XANES) spectroscopy JF - Ambio N2 - A pot experiment was carried out with maize to determine the phosphorus (P) plant-availability of different secondary P-fertilizers derived from wastewater. We analyzed the respective soils by P K-edge X-ray absorption near-edge structure (XANES) spectroscopy to determine the P chemical forms that were present and determine the transformation processes. Macro- and micro-XANES spectroscopy were used to determine the chemical state of the overall soil P and identify P compounds in P-rich spots. Mainly organic P and/or P adsorbed on organic matter or other substrates were detected in unfertilized and fertilized soils. In addition, there were indications for the formation of ammonium phosphates in some fertilized soils. However, this effect was not seen in the maize yield of all P-fertilizers. The observed reactions between phosphate from secondary P-fertilizers and cofertilized nitrogen compounds should be further investigated. Formation of highly plant-available compounds such as ammonium phosphates could make secondary P-fertilizers more competitive to commercial phosphate rock-based fertilizers with positive effects on resources conservation. KW - Phosphorus KW - Pot experiments KW - Secondary P-fertilizer KW - Sewage sludge ash KW - Soil KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-433782 DO - https://doi.org/10.1007/s13280-017-0973-z SN - 0044-7447 VL - 47 IS - 1 SP - 62 EP - 72 PB - Springer AN - OPUS4-43378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kratz, S. A1 - Vogel, Christian A1 - Adam, Christian T1 - Agronomic performance of P recycling fertilizers and methods to predict it: a review JF - Nutrient Cycling in Agroecosystems N2 - Phosphorus (P) is an essential element for all life forms, and P-availability thus an important driver of a functioning agriculture. However, phosphate rock resources for P-fertilizer production are only available in a few countries. Therefore, P-recovery from waste materials has become of increasing interest during the last decade and has been investigated worldwide. In order to characterize potential novel P-fertilizers made from recycled materials, a large array of P-compound characterizations, chemical extractions and growth experiments were performed. This review bundles the work carried out in that field over the last years. Overall, P-fertilizers from recycled materials show a broad range of P-compounds with very different chemical structure and solubility. Growth experiments performed to assess their fertilizing effects display high variations for most of the products. While these experiments have demonstrated that some fertilizers made of recycled materials may reach P effects in the same order of magnitude as water-soluble phosphate rock-based fertilizers, an important limitation in their interpretation is the fact that they often vary considerably in their experimental design. The existing data show clearly that standardization of growth experiments is urgently needed to achieve comparable results. Standard chemical extractants used to assess the chemical solubility of P-fertilizers were found to be of limited reliability for predicting plant P uptake. Therefore, alternative methods such as sequential fractionation, or the extraction of incubated soil/fertilizer mixtures with standard soil extractants or with P sink methods should be tested more intensively in the future to provide alternative options to predict the P-availability of fertilizers from recycled materials. KW - Recycling fertilizer KW - Phosphorus KW - Chemical extraction methods KW - Agronomic performance KW - Incubated soil/fertilizer mixtures KW - P sink method KW - Diffusive gradients in thin films (DGT) PY - 2019 DO - https://doi.org/10.1007/s10705-019-10010-7 SN - 1385-1314 SN - 1573-0867 VL - 115 IS - 1 SP - 1 EP - 39 PB - Springer AN - OPUS4-48713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Lombi, E. A1 - Herzel, Hannes A1 - Zuin, L. A1 - Wang, D. A1 - Felix, R. A1 - Adam, Christian T1 - Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils JF - Analytica Chimica Acta N2 - A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plantavailable soil P species, we combined DGT with infrared and P K- and L2,3-edge X-ray adsorption near edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Furthermore, intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed. KW - Phosphorus plant-availability KW - X-ray adsorption near-edge structure (XANES) spectroscopy KW - Infrared spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.01.037 SN - 0003-2670 VL - 1057 SP - 80 EP - 87 PB - Elsevier AN - OPUS4-47471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Dombinov, V. A1 - Vogel, Christian A1 - Willbold, S. A1 - Levandowski, G. V. A1 - Meiller, M. A1 - Müller, F. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Jablonowski, N. D. A1 - Schrey, S. D. A1 - Adam, Christian T1 - Soybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films (DGT), and X-ray Diffraction Analysis (XRD) JF - agronomy N2 - The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives (Na2SO4 and K2SO4) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction . We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaPO4. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)PO4 as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash. KW - Sugar cane bagasse KW - Chicken manure ash KW - Thermochemical treatment KW - Nutrient KW - Plant availability PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509735 DO - https://doi.org/10.3390/agronomy10060895 VL - 10 SP - 895 EP - 6 PB - MDPI AN - OPUS4-50973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Krüger, O. A1 - Murzin, V. A1 - Caliebe, W. A1 - Adam, Christian T1 - Chromium (VI) in phosphorus fertilizers determined with the diffusive gradients in thin-films (DGT) technique JF - Environmental Science and Pollution Research N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants such as chromium in its hexavalent state (Cr(VI)). This hazardous form of chromium is therefore regulated with low limit values for agricultural products even though the correct determination of Cr(VI) in these fertilizers may be hampered by redox processes, leading to false results. Thus, we applied the novel diffusive gradients in thin-films (DGT) technique for Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray Absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and for most tested materials selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) so that Cr(VI) values are overestimated. Since certain types of the P fertilizers contain mobile Cr(III) or partly immobile Cr(VI), it is necessary to optimize the DGT binding layers to avoid aforementioned over- or underestimation. Furthermore, our investigations showed that the Cr K-edge XANES spectroscopy technique is unsuitable to determine small amounts of Cr(VI) in fertilizers (below approx. 1% of Cr(VI) in relation to total Cr). KW - Phosphorus fertilizer KW - Sewage sludge ash KW - Diffusive Gradients in thin films (DGT) KW - Chemical extraction KW - XANES spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509578 DO - https://doi.org/10.1007/s11356-020-08761-w SN - 0944-1344 VL - 27 SP - 24320 EP - 24328 PB - Springer AN - OPUS4-50957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Huang, J. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Adam, Christian T1 - Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize JF - Science of the total environment N2 - Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammoniumcan enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and anammoniumsulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammoniumin the soil resulted in a high amount of plant available Ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammoniumuptake, whichmobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. KW - Fertilzer KW - Phosphorus recovery KW - Ammonium KW - Nitrification inhibitor KW - XANES spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2020.136895 SN - 1879-1026 VL - 715 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-50477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Taube, Mareike A1 - Krüger, O. A1 - Baran, R. A1 - Adam, Christian T1 - Uranium and thorium species in phosphate rock and sewage sludge ash based phosphorus fertilizers JF - Journal of Hazardous Materials N2 - Phosphorus (P) is an essential element for all forms of life and is thus often applied as phosphate rock-based P-fertilizers in agriculture to enable continuous farming. However, these P-fertilizers contain also hazardous uranium (U) and thorium (Th), up to 660 and 220 mg/kg, respectively. On the contrary, novel P-fertilizers made from sewage sludge (ash) contain only low mass fractions of U and Th. In addition to the total amount of U and Th in P-fertilizers, their mobility and bioavailability is important, which depends to a large extent on their chemical state, especially oxidation state and chemical bonding. Thus, we analyzed their chemical state in various P-fertilizers by U and Th L3-edge HERFD-XANES spectroscopy. Phosphate rocks and sewage sludge-based P-fertilizers contain mainly U(IV) compounds which have only a low bioavailability. In contrast, acidic treatment of phosphate rock to produce super phosphates lead to an oxidation to U(VI) compounds (including formation of uranium phosphates) with a strongly increased bioavailability. On the contrary, all analyzed P-fertilizers contain Th in form of strongly insoluble phosphates and oxides with a low bioavailability. Additionally performed water extractions and Diffusive Gradients in Thin-films (DGT) experiments support these findings. KW - Phosphorus fertilizer KW - Sewage sludge KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Diffusive Gradients in Thin-films (DGT) KW - Extraction PY - 2020 DO - https://doi.org/10.1016/j.jhazmat.2019.121100 SN - 0304-3894 VL - 382 SP - 121100, 1 EP - 6 AN - OPUS4-48872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Herzel, Hannes A1 - Félix, R. A1 - Adam, Christian A1 - Steffens, D. T1 - Thermal treatment of sewage sludge for phosphorus fertilizer production: a model experiment JF - Journal of Plant Nutrition N2 - Phosphorus (P) resource availability and quality is declining and recycling P-fertilizers from waste materials are becoming increasingly important. One important secondary P resource is sewage sludge (SSL) where P is often bound as aluminum phosphate (Al-P), iron phosphate (Fe-P) and polyphosphate (poly-P), respectively. Thermal treatment in different ways is a promising way in P recycling to produce highly plant-available P-fertilizers. To investigate mechanisms behind transformation of hardly available P-species toward plant-available P forms we treated a model SSL containing different kinds of defined P sources by low-temperature conversion (LTC) at 500 °C and subsequent thermochemical treatment of the LTC product with Na additives (TCT) at 950 °C, respectively. Pot experiments with ryegrass were carried out to determine the plant availability of P of the different treatments. The poly-P (here pyrophosphates) based fertilizers had a very high plant availability after both thermal treatments. During LTC treatment the plant availability of the Fe-P and Al-P variants increased because of the Formation of Fe(II) phosphates and/or pyro-/polyphosphates. Especially the formation of Al-polyphosphate shows a high plant availability. The subsequent TCT further increased strongly the plant availability of the Fe-P variants because of the formation of highly plant-available CaNaPO4. Thus, a direct TCT without prior LTC probably also produce CaNaPO4 and is recommended for Fe-P based SSL. However, a molar Ca/P ratio of � 1 in the fertilizer is favorable for CaNaPO4 formation. Thus, the knowledge on the source of primary P in SSL is essential for choosing the accurate thermal treatment method to produce highly plant-available P-fertilizers from SSL. KW - Phosphorus KW - Sewage sludge KW - X-ray diffraction KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Fertilizer PY - 2021 DO - https://doi.org/10.1080/01904167.2021.1994595 SN - 0190-4167 VL - 45 IS - 8 SP - 1123 EP - 1133 PB - Taylor & Francis Online AN - OPUS4-53755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Helfenstein, J. A1 - Massey, M. A1 - Sekine, R. A1 - Kretzschmar, R. A1 - Beiping, L. A1 - Peter, T. A1 - Chadwick, O. A1 - Tamburini, F. A1 - Rivard, C. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Lassalle-Kaiser, B. A1 - Frossard, E. T1 - Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils JF - Geoderma N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic Gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to co-location with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. KW - Phosphorus KW - soil KW - microspectroscopy KW - Raman spectroscopy KW - XANES spectroscopy KW - x-ray diffraction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511522 DO - https://doi.org/10.1016/j.geoderma.2020.114681 SN - 0166-0918 SN - 1872-6259 VL - 381 SP - 114681-1 EP - 114681-11 PB - Elsevier CY - Amsterdam AN - OPUS4-51152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gentzmann, Marie A1 - Schraut, Katharina A1 - Vogel, Christian A1 - Gäbler, H.-E. A1 - Huthwelker, T. A1 - Adam, Christian T1 - Investigation of scandium in bauxite residues of different origin JF - Applied Geochemistry N2 - This paper focuses on the scandium speciation in bauxite residues of different origin. Insights into mineralchemical similarities and differences of these materials will be presented and links to their natural geological background discussed. The presented research should provide fundamental knowledge for the future development of efficient and viable technologies for Sc-recovery from bauxite residues derived from different bauxites and accumulating at different localities. In total, five bauxite residues were investigated which originated from Greece, Germany, Hungary and Russia (North Ural & North Timan) using a combination of different analytical tools. Those included: laser ablation inductively coupled plasma mass spectrometry, X-ray absorption near Edge structure (XANES) spectroscopy, μ-Raman spectroscopy as well as scanning electron microscopy and electron microprobe analyses. X-ray fluorescence and inductively coupled plasma mass spectrometry were used to determine the overall chemical composition. The investigated samples were found to exhibit a relatively homogenous distribution of Sc between the larger mineral particles and the fine-grained matrix except for Al-phases like diaspore, boehmite and gibbsite. These phases were found to be particularly low in Sc. The only sample where Sc mass fractions in Al-phases exceeded 50 mg/kg was the Russian sample from North Ural. Fe-phases such as goethite, hematite and chamosite (for Russian samples) were more enriched in Sc than the Al-phases. In fact, in Greek samples goethite showed a higher capacity to incorporate or adsorb Sc than hematite. Accessory minerals like zircon, rutile/anatase and ilmenite were found to incorporate higher mass fractions of Sc (>150 mg/kg), however, those minerals are only present in small amounts and do not represent major host phases for Sc. In Russian samples from North Ural an additional Ca–Mg rich phase was found to contain significant mass fractions of Sc (>500 mg/kg). μ-XANES spectroscopy was able to show that Sc in bauxite residue occurs adsorbed onto mineral surfaces as well as incorporated into the crystal lattice of certain Fe-phases. According to our observations the bauxite type, i.e. karstic or lateritic, the atmospheric conditions during bauxitization, i.e. oxidizing or reducing, and consequently the dominant Sc-bearing species in the primary Bauxite influence the occurrence of Sc in bauxite residues. In karstic bauxites, underlying carbonate rocks can work as a pH-barrier and stabilize Sc. This prevents the Sc from being mobilized and removed during bauxitization. Hence, karstic bauxites are more prone to show a Sc enrichment than lateritic bauxites. Reducing conditions during bauxitization support the incorporation of Sc into clay minerals such as chamosite, which can dissolve and reprecipitate during Bayer processing causing Sc to be redistributed and primarily adsorb onto mineral surfaces in the bauxite residue. Oxidizing conditions support the incorporation of Sc into the crystal lattice of Fe-oxides and hydroxides, which are not affected in the Bayer process. The genetic history of the bauxite is therefore the major influential factor for the Sc occurrence in bauxite residues. KW - Sc recovery KW - Scandium KW - Bauxite Residue KW - Red Mud KW - XANES PY - 2021 DO - https://doi.org/10.1016/j.apgeochem.2021.104898 SN - 0883-2927 VL - 126 SP - 104898 PB - Elsevier Ltd. AN - OPUS4-52123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -