TY - JOUR A1 - Krüger, Oliver A1 - Fiedler, F. A1 - Adam, Christian A1 - Vogel, Christian A1 - Senz, R. T1 - Determination of chromium (VI) in primary and secondary fertilizer and their respective precursors N2 - Hexavalent chromium species (Cr(VI)) are often carcinogenic, of high acute toxicity, highly mobile, and thus pose a severe risk to health and environment. Fertilizers usually contain significant amounts of chromium. Therefore, a reliable analysis of chromium and the fraction of Cr(VI) are crucial for safe use of fertilizers. This problem is expected to increase in the future, since more and more recycled fertilizers emerge due to increasing fertilizer demand and respective supply risks. However, existing analytical methods have been developed for conventional fertilizers and have to be tested whether they are suitable for the new materials. Thus, we performed a wet-chemical extraction for Cr(VI) on several matrices as well as respective quality control experiments including spiking with Cr(III) and Cr(VI)compounds. We found the Cr(VI) amounts to be below 2 mg/kg except for a thermally post-treated sewage sludge ash (SSA) that showed 12.3 mg/kg. The presence of organic matter e.g. in sludge or precipitated struvite caused a reduction of spiked Cr(VI) and thus no satisfying recovery for Quality control. Cr(VI) reduction was also observed for SSA, presumably due to the presence of Fe(II) compounds. Even though the tested procedure can be hampered in some recycled fertilizer matrices, it might be adapted to be applicable also for these complex samples. KW - Chromium speciation KW - Recycling fertilizers KW - Matrix dependencies PY - 2017 U6 - https://doi.org/10.1016/j.chemosphere.2017.05.011 SN - 0045-6535 VL - 182 SP - 48 EP - 53 PB - Elsevier CY - Amsterdam AN - OPUS4-40101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Ramsteiner, M. A1 - Sekine, R. A1 - Doolette, A. A1 - Adam, Christian T1 - Characterization of phosphorus compounds in soils by deep ultraviolet (DUV) Raman microspectroscopy N2 - Deep ultraviolet Raman microspectroscopy was successfully investigated as a new approach to analyze the chemical state of phosphorus compounds directly in soil. We demonstrate that ultraviolet excitation has the advantage to avoid the interference with the strong fluorescence, which occurs in the visible spectral range caused by organic matter in soils. Furthermore, the spatial resolution of <1 μm2 enables the detection of very small phosphorus particles. For some organic phosphorus compounds (β-glycerophosphate, aminomethylphosphonic acid), sample cooling to -100 °C is found to strongly reduce the rate of degradation induced by the illumination with the ultraviolet excitation light. However, phytic acid and adenosine monophosphate degraded even with cooling. Our results reveal the capability of deep ultraviolet Raman microspectroscopy as a high-resolution benchtop imaging technique for the analysis of local interactions between soil compounds with the potential to become an analytical key to improve the understanding of transformation mechanisms of phosphates as well as other mineral phases in soils. KW - Phosphorus speciation KW - Deep ultraviolet (DUV) Raman microspectroscopy KW - Soil PY - 2017 U6 - https://doi.org/10.1002/jrs.5115 SN - 0377-0486 VL - 48 IS - 6 SP - 867 EP - 871 PB - Wiley AN - OPUS4-40508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Adam, Christian A1 - Steffens, D. T1 - Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance N2 - Sewage sludge has one of the highest phosphorus (P) recovery potentials of all waste materials. Therefore, P-recycling from sewage sludge could contribute to closing the P-cycle. Recently, various thermal processes for P-recovery have been developed, but there is still a demand for information on the effect of different process parameters (e.g. additives and temperature) on P-speciation and especially on the fertilization performance. In the present study, two common methods (low-temperature conversion at 400–500 °C and thermochemical treatment at 950 °C) were investigated and combined to produce highly bioavailable P-fertilizers from two different types of sewage sludge based on chemical phosphorus precipitation (Chem-P) and enhanced biological phosphorus removal (Bio-P). The results of P-fractionation, X-ray diffraction analysis, and pot experiments with maize showed that Bio-P sludges attain high P-plant-availability after treatment at low temperatures (400 °C). In contrast, Chem-P sludges can adequately be treated at higher temperatures under reductive conditions with sodium additives to form highly bioavailable calcium-sodium-phosphate. Additionally, also highly heavy-metal contaminated sludges can be thermochemically treated at high temperatures to achieve the legal requirements for fertilizers. KW - P-recovery KW - Low-temperature-conversion KW - Thermochemical treatment KW - P-fractionation KW - P-plant-availability KW - Sewage sludge PY - 2017 U6 - https://doi.org/10.1016/j.wasman.2017.02.019 SN - 0956-053X VL - 62 SP - 194 EP - 203 AN - OPUS4-39907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Lombi, E. A1 - Steffens, D. A1 - Adam, Christian T1 - Phosphorus availability of sewage sludge-based fertilizers determined by the diffusive gradients in thin films (DGT) technique N2 - The plant-availability of phosphorus (P) in fertilizers and soil can strongly influence the yield of agricultural crops. However, there are no methods to efficiently and satisfactorily analyze the plant-availability of P in sewage sludge-based P fertilizers except by undertaking time-consuming and complex pot or field experiments. We employed the diffusive gradients in thin films (DGT) technique to quantify the plant P availability of various types of P fertilizers with a novel focus on sewage sludge-based P fertilizers. Mixtures of fertilizer and soil were incubated for 3 weeks at 60% water holding capacity. DGT devices were deployed at the beginning of the incubation and again after 1, 2, and 3 weeks. Two weeks of incubation were sufficient for the formation of plant-available P in the fertilizer/soil mixtures. In a pot experiment, the DGT technique predicted maize (Zea mays L.) biomass yield and P uptake significantly more accurately than standard chemical extraction tests for P fertilizers (e.g., water, citric acid, and neutral ammonium citrate). Therefore, the DGT technique can be recommended as a reliable and robust method to screen the performance of different types of sewage sludge-based P fertilizers for maize cultivation minimizing the need for time-consuming and costly pot or field experiments. KW - Soil testing KW - Chemical extraction tests KW - Phosphate recovery KW - Plant growth experiments KW - Recycling PY - 2017 U6 - https://doi.org/10.1002/jpln.201600531 VL - 180 IS - 5 SP - 594 EP - 601 PB - Wiley VCH Verlag AN - OPUS4-42413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Adam, Christian A1 - Steffens, D. T1 - Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance N2 - Sewage sludge has one of the highest phosphorus (P) recovery potentials of all waste materials. Therefore, P-recycling from sewage sludge could contribute to closing the P-cycle. Recently, various thermal processes for P-recovery have been developed, but there is still a demand for information on the effect of different process parameters (e.g. additives and temperature) on P-speciation and especially on the fertilization performance. In the present study, two common methods (low-temperature conversion at 400–500° C and thermochemical treatment at 950° C) were investigated and combined to produce highly bioavailable P-fertilizers from two different types of sewage sludge based on chemical phosphorus precipitation (Chem-P) and enhanced biological phosphorus removal (Bio-P). The results of P-fractionation, X-ray diffraction analysis, and pot experiments with maize showed that Bio-P sludges attain high P-plant-availability after treatment at low temperatures (400° C). In contrast, Chem-P sludges can adequately be treated at higher temperatures under reductive conditions with sodium additives to form highly bioavailable calcium-sodium-phosphate. Additionally, also highly heavy-metal contaminated sludges can be thermochemically treated at high temperatures to achieve the legal requirements for fertilizers. KW - P-recovery KW - Low-temperature-conversion KW - Thermochemical treatment KW - P-fractionation KW - P-plant-availability KW - Sewage sludge PY - 2017 U6 - https://doi.org/10.1016/j.wasman.2017.02.019 SN - 0956-053X VL - 62 SP - 194 EP - 203 PB - Elsevier CY - Amsterdam AN - OPUS4-41646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -